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Abstract

This research addresses issues in simulation-based system level dependability analysis of
fault-tolerant computer systems. The issues and difficulties of providing a general simulation-
based approach for system level analysis are discussed and a methodology that address and
tackle these issues is i)resented. The proposed methodology is designed to permit the study of
a wide variety of architectures under various fault conditions. It permits detailed functional
modeling of architectural features such as sparing policies, repair schemes, routing algorithms
as well as other fault-tolerant mechanisms, and it allows the execution of actual application
software. One key benefit of this approach is that the behavior of a system under faults does
not have to be pre-defined as it is normally done. Instead, a system can be simulated in detail
and injected with faults to determine its failure modes.

The thesis describes how object-oriented design is used to incorporate this methodology
into a general purpose design and fault injection package called DEPEND. A software model
is presented that uses abstractions of application programs to study the behavior and effect of
software on hardware faults in the early design stage when actual code is not available. Finally,
an acceleration technique that combines hierarchical simulation, time acceleration algorithms
and hybrid simulation to reduce simulation time is introduced.

An extensive simulation based study of the Tandem Integrity S2 is conducted with DE-
PEND to illustrate its capabilities. The system is evaluated to determine how it handles
near-coincident errors caused by correlated and latent faults. Issues such as memory scrubbing,
re-integration policies and workload dependent repair times which affect how the system han-
dles near-coincident errors are also evaluated. Application specific analysis of the existing and
a newly proposed scrubbing scheme is performed. Unlike other simulation-based dependability
studies, measurements from injection experiments conducted on an actual Tandem Integrity S2
computer are used to validate the software model and the simulation model of the Integrity S2.
Results from a detailed simulation model that does not use acceleration are used to validate
the acceleration technique.

Results from the study show that accurate application specific analysis using the software

model can produce coverage values that are over 100% different from those obtained with simple

-
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estimations of program behavior. A simulation. model using the acceleration technique is shown
to produce results that are within the 99% confidence interval of a simulation model that does
not use acceleration, but it does so in 7 minutes as opposed to 36 hours. Accurate modeling
of the “staggered failure” effect caused by near-coincident errors observed on actual systems
show that the impact of correlation (for the Integrity S2) is dependent on the error latency
distribution. Simple analytical models that fail to represent this relationship produce mean time
between failures (MTBF) that are orders of magnitude lower. Different latency distributions
with the same mean are shown to produce statistically significant changes in system MTBF
when correlation is considered. Inter-component dependencies, which are a function of the
architecture and error latency, are shown to substantially reduce system MTBF. Scrubbing is

shown to be ineffective unless the latency times exceed half the cycle time of the scrubber.
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Chapter 1

Introduction

The increasing demand and growing complexity of dependable systems has spurned the need
for automated design tools that can reduce design time while ensuring that dependability (e.g.
availability, reliability) specifications are met. The focus has been on developing electrical
and gate level fault analysis tools. Though these tools are ideal for analyzing LSI and VLSI
components they are not suited to analyze a complete system. Dependability is a system
issue and as such isolated analysis of the individual components is insufficient. Ideally. system
level dependability analysis should consider the hardware, the system software, the application
and the interaction and inter-dependencies of all of these components under realistic fault
scenarios. This is an extremely complex task and the difficulties that arise depend on the
approach taken. Currently, two approaches are primarily used for system level dependability
analysis. Analytical tools, and in particular tools that represent systems with continuous time
Markov chains (CTMC), are used for very high-level trade-off analysis. These tools are best
suited for the early design stages when little information is known about the target machine.
However, the accuracy of their results is limited by the level of detail to which they can represent
a system. The second approach is fault injection of proto-type systems. Though this approach
provides the most believable results, it has three major drawbacks. First, it does not provide
feedback during the design stages. Second, because the system is fixed, it cannot be used to
study alternate configurations. Third, it cannot provide many dependability measures such as
availability and mean time between failure (MTBF) because it would require measuring the

system for years.



This thesis explores a third approach: functional simulation-based system level dependabil-
ity analysis. Unlike analytical models, functional simulation can accurately model the functional
behavior of the system components, the inter-component dependencies, workload patterns and
reconfiguration schemes. This makes the approach more useful during the intermediate stages
of system development when more information is available about these system characteristics.
Furthermore, if the functional simulation tool can also inject faults, it can be used to perform
injection experiments and provide early design feedback. There are a few simulation-based tools
that are specifically geared for system level dependability analysis. However, they either han-
dle very specific architectures and fault models or only use probabilistic modeling and hence
are essentially extensions of analytical tools. This thesis focusses on the development of an
integrated fault injection and functional simulation environment for system level dependability
analysis that can be used to evaluate a wide variety of systems. The thesis identifies the major
issues that impede the development of such a tool, presents solutions to tackle these issues and

uses them to perform a comprehensive study of an actual fault-tolerant machine.

1.1 Related Work

In [19], the authors describe and compare several tools that solve CTMC models. There is
increasing work in software and hardware fault injection of proto-type systems [38, 64, 75, 18,
36]. However, there is a lack of simulation tools for system level dependability analysis. Most
simulation tools are designed to facilitate performance analysis (CSIM [60], ASPOL [43], SES
Workbench [61], RESQ [58]). These tools do not provide the mechanisms needed to interrupt
the system and inject faults. VHDL [30] is a powerful hardware specification language but it
does not contain built-in facilities to support dependability analysis. NEST [17] is a functional
simulation and proto-typing tool used explicitly to analyze distributed networks and system
protocols. It is very specialized and has a limited set of facilities to fail links and nodes.
Another functional simulation tool called REACT [12] is specifically designed for analyzing
alternative TMR architectures. Metasan [56] and the Rainbow Net [35] are Petri-net tools. An
extended Petri-net structure is used to input a model and solve it via simulation. Though the
Petri-net tools have greater applicability than analytical tools, they rely solely on probabilistic

modeling to describe a system. This is a major limitation because, as we show in detail in



Chapter 3, it requires that the user pre-define the fault behavior of a system. Furthermore,
these tools provide only a limited set of fault models and provide no mechanism to reduce

simulation time explosion.

1.2 Contributions

The focus of this research is the development and use of simulation techniques for system level
dependability analysis. Ad-hoc techniques are commonly used to conduct detailed system level
dependability analysis using functional simulation. Each system design effort is accompanied by
the fresh development of simulation models specific to the architecture being built and the fault
models being considered. There has been no prior attempt to characterize and provide a more
structured approach to functional simulation-based dependability analysis at the system level.
The goals of this thesis are to provide a structured approach and to develop methods that allow
a comprehensive study of a system including the hardware and software components. Towards
these goals, several issues that impede the development of a general-purpose, integrated fault
injection and simulation environment for system level dependability analysis are identified.

Broadly, they are:

e Modeling a large variety of components.

Coping with the large fault model domain.

Reducing model development time and model complexity.

Incorporating software behavior under faults in a simulation-based study.

Reducing simulation time explosion.

Methods to tackle these issues are discussed and presented. A synergy of these methods is
used to analyze an actual system under realistic fault conditions for specific applications. The
methods are validated by comparing the simulation results with those obtained from fault
injection experiments on an actual machine. Finally, the methods are incorporated into a

simulation tool called DEPEND.



1.3 Overview

Chapter 2 discusses the major issues in developing a general-purpose system level functional
simulation tool. Chapter 3 presents the approach used to tackle the first three issues mentioned
earlier. It also presents the DEPEND integrated simulation and fault injection environment
that incorporates these approaches. The chapter presents the key features of the tool and the
fault models it provides. A table comparing DEPEND’s features with existing simulation-based
system level dependability analysis tools is also included.

Having described the essential features, Chapter 4 illustrates the uses and benefits of the
tool. One can ask, given the large number of analytical and Petri-net based simulation tools,
what is the need for functional simulation tools for system level dependability analysis? What
additional information and capabilities can they provide over analytical tools and fault-injection
environments? The goal of Chapter 4 is to answer these questions with a few examples.

DEPEND is used to analyze a triple-modular redundant (TMR) system and in particular the
Tandem Integrity S2 fault-tolerant system under realistic fault scenarios. It is well established
that this system is very effective against single faults [34, 75]. An important question is how such
systems cope with near-coincident errors caused by correlated and latent faults. Architectural
issues that have a bearing on how the system handles near-coincident faults include memory
scrubbing, re-integration policies and workload dependent repair times. Since the reliability of
a system is also affected by the application and because most fault-tolerant systems are geared
to perform specific functions, it is also imperative to study such systems within the context of
an application. To study these issues, DEPEND is used to simulate the Integrity S2 system and
evaluate the combined effect of all these factors. Furthermore, the simulation of the Integrity
S2 system is validated by comparing the results of the simulations with measurements obtained
from fault injection experiments conducted on a production Integrity S2 machine. Chapter 5
describes the salient features of the Tandem Integrity S2 system. It also presents the basic
simulation model developed with DEPEND.

The focus of Chapter 6 is on application specific dependability analysis. It presents the
simulation-based model developed to analyze software behavior under hardware faults and to
study the impact of latent errors on system dependability. A probabilistic graph model is

proposed that represents program behavior at an abstract level and can obtain key application



specific parameters that affect system dependability. These parameters are used to perform
application specific analysis of functional detection schemes. It is shown that if alternate,
simple techniques are used to model application program behavior the system dependability
measures obtained can be grossly inaccurate.

Chapter 7 presents the acceleration technique that reduces simulation time explosion. The
technique uses a combination of hierarchical simulation, time acceleration, and hybrid simu-
lation. This technique makes it possible to conduct a detailed simulation study of the TMR
system. Unlike other simulation acceleration techniques, this technique is general and not
limited to any particular type of simulation model.

Chapter 8 describes the simulation experiments in detail and presents results of the study.
The impact of correlated errors, latent errors and various repair and memory scrubbing schemes
are quantized and dependability bottlenecks are identified. Results obtained with simplistic
fault models are compared with those obtained with DEPEND’s fault models to illustrate the
need for accurate modeling of the fault occurrence process. Finally, Chapter 9 summarizes the
main points of the thesis and the findings of the TMR study. It also contains an assessment
of functional simulation-based dependability analysis and suggests future extensions of this

research.



Chapter 2

Development Issues

Functional simulation (also referred to as behavioral simulation) allows more detailed and ac-
curate modeling of computer systems. But this accuracy comes at a cost. Accurate modeling
requires greater information about the system components, more knowledge about their spe-
cific fault models, and more time in developing a simulation. There are at least five issues
that impede the development of general-purpose, functional simulation tools for system level
dependability analysis. The first is a lack of well established systém level fault models. This is
partly due to the second issue which is a large and varied component domain. At the gate level,
the basic components are gates with single functions and well defined interconnections. At this
level, it is possible to establish a fault model such as the single stuck-at fault model that can
consistently be applied to all gates to model their fault behavior. At the system level, the basic
components include CPUs, communication channels, disks, software systems and memory. The
components have complex inputs, perform multiple functions, have varied physical attributes
(e.g. hardware and software) and complex interconnections. In addition to the diversity of the
components that comprise a system, two similar components (such as two CPUs) can have dif-
ferent functions and behavior. This makes it difficult to establish a single fault model that can
be consistently applied to all components. Limiting the types of components or fault models
represented is one solution but it restricts the tool’s applicability (e.g. NEST).

The third issue, which is especially significant when simulating large complex systems. is the
effort and time required to develop a functional simulation model. For fault injection studies

and dependability analysis, there are two factors that contribute to this.- One is the time and



effort needed to describe the detailed functionality of the system components. The other is
the time and effort required to inject faults, initiate repairs, abort, reschedule and synchronize
events and maintain a whole host of fault statistics. As the number of components in the system
becomes large, a well formulated, structured and automated approach is needed to contend with
the complexity.

The fourth issue is the impact of the software on system dependability. Dependability
studies have tended to focus on a system’s hardware components. But as the hardware becomes
more reliable, the software component is becoming a more dominant factor [27]. The behavior
and effect of the software on hardware faults is a major concern. The process of software
execution determines parameters such as detection latency times, probability of propagation
and propagation times. These parameters have a bearing on the effectiveness of functional
detection and repair schemes, which in turn have a huge impact on the dependability of a
system. Since the process of software execution is determined by an application program, it is
imperative to perform application specific analysis of functional detection schemes and fault-
tolerant mechanisms in the early design stages. Hence, methods are needed that allow the
designer to incorporate the application into the overall dependability study.

The fifth issue, an extremely important issue and one that is common to both functional and
probabilistic simulation, is simulation time explosion. This occurs when the system modeled
has extremely small failure probabilities requiring large simulation runs to obtain statistically
significant results. This is especially a problem with functional simulation because its primary
benefit is detailed modeling which further contributes to simulation time explosion. Unless
effective techniques are found to reduce simulation execution time, functional sifnulation-based
dependability analysis will not be generally applicable. Two approaches to reduce simulation
time that have been extensively studied in the literature are importance sampling and parallel
simulation. Importance sampling [50, 41, 72] is a statistical technique that skews the proba-
bility of failure, thereby reducing the number of trials needed to collect failure data, and then
“unskews” the results obtained. Though this heuristic has been shown to be very effective
in selected cases, it has several drawbacks. It is not generally applicable, it is meant for use
with probabilistic simulation, and it cannot be used to obtain many steady-state dependability

measures (e.g. mean time between failure) for general failure distributions. Hence, if this is the



sole acceleration technique used, it will preclude the use of behavioral models and the generality
of the tool.

Parallel simulation breaks up the simulation model into several processes and executes them
on different machines. Many heuristics [2, 33, 32, 49, 23] have been developed to synchronize
the simulation so that events generated on the separate processors are executed in chronological
order. Unfortunately, the effectiveness of these schemes are application dependent and work well
only with applications that require little synchronization. The focus of past research has been
on synchronization heuristics, even though dividing a simulation into separate logical processes
and assigning them to processors is not a trivial problem and has a significant bearing on the
speed-up achieved. Even when this approach is successful for certain applications, the speed-up
achieved is not linear and is limited to the number of processors available to the user.

To summarize, a general-purpose simulation-based system level dependability analysis tool
must effectively handle the large component and fault model domain, provide an environment
that facilitates the development of functional simulation models, incorporate the impact of soft-
ware to allow application specific analysis and furnish generally applicable methods to accelerate

the simulation.



Chapter 3

Simulation Environment

This chapter presents the approach used to solve the first three issues mentioned in the previous
chapter and it describes the key features of the integrated fault injection and simulation tool,

DEPEND, that has been developed.

3.1 Approach

The object-oriented design paradigm is used to tackle the first three issues discussed earlier.
Object-oriented design is the construction of a software system as a structured collection of
abstract data type implementations [47]. A class is an implementation of an abstract data type
and an object is a instantiation of a class. A class contains private internal data structures and
methods, which are analogous to functions and procedures, that manipulate its internal data.
The word collection reflects that each class is an independent, useful component of the system.
The key, however, is the word structured which reflects an intelligent division of the system into
classes and the existence of important relationships among them.

Through an intelligent, structured, development of classes, the problems of large compo-
nent and fault domain are tackled. A combination of two criteria: modular decomposition and
modular composability [46], is used to break up the simulation process into individual classes.
Modular decomposition consists of breaking down a problem into small elements whereas mod-
nlar composition favors production of elements that can be freely combined with each other to
provide new functionality. Two relations, clientship and inheritance [6] are used to combine the

elements (or classes). In a clientship, one class is a client of another that provides the service.
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For example, a class that implements a stack could rely on a singly linked list for its implemen-
tation and thus be a client of the class that implements the linked list. Inheritance, a central
mechanism of object oriented programming, allows a new class to be derived from an existing
class. The new (or derived) class inherits the features of and is an extension or a specialization
of the existing class, the ancestor. An example will help to clarify how modular decomposition
and composition are used to tackle the large fault model domain. The fault injection process
can be broken down into two processes. One process determines when to inject a fault and
interrupt the system and another process responds to the fault injected. The first process is
common to all fault injection methods. It encapsulates the various mechanisms used to deter-
mine the arrival time of a fault and interrupt the system. The second process is the fault model
and is specific to the component and the type of fault being injected. If we encapsulate the first
process into a class called the fault injector class and combine it with one of a multiple fault
model classes, it is possible to create an environment that can inject many types of faults. The
fault injector class is ignorant of the types of faults injected and the components injected. The
fault model class encapsulates this component and fault speciﬁcv information. As a result, this
approach can be used to inject not only electronic components but mechanical components.
This same structured, modular approach is used to cope with the large component domain;
common aspects of similar components are encapsulated in a class which then combines with
other classes to provide more specific functionality. Furthermore, because users can specify the
classes that model component specific behaviors, the tool is not limited to any pre-defined set
of fault models or component types.

A library of pre-developed classes is used to reduce the time and effort needed to develop
simulation models. The classes in the library provide the skeletal foundation necessary to
rapidly model an architecture and conduct simulated fault injection experiments. The classes
form a hierarchy with fundamental classes at the top and derived classes, which inherit these
fundamental classes, at the bottom. The complexity and specificity of the classes increase as
the bottom of the hierarchy is reached. The fundamental classes provide functionality that is
general and widely used. Such functions include the fault injection mechanism, fault tracing
where a list of all faults injected is recorded and reported, and maintaining fault statistics (e.g.
MTBF, MTBR, Availability, Coverage). Other fundamental classes include events, mailboxes,
queues, stacks and servers. These are basic constructs needed for functional simulation. At the

-
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bottom of the hierarchy are classes that model components found in fault-tolerant computer
systems: voters, self-checking components, fault tolerant servers, communication links and
triple-modular redundant systems. These classes are developed incrementally by combining
(clientship and inheritance) several fundamental classes and adding new methods that are
specific to the class.

Object oriented design facilitates reusability [47, 5] and the classes in the library were
specifically designed for reuse. Model development time is reduced by the library because it
provides a kernel of classes that can be used as is, or readily inherited to create more specific
classes thus eliminating the need to develop them from scratch. The complexity of injecting
faults, initiating repairs, maintaining statistics etc. is reduced because each derived class inherits
fundamental classes that provide these services. As a result, each class automatically injects
its own faults, initiates its own repairs and maintains all statistics. At the beginning of a
simulation, the user provides the fault and repair distributions and at the end, the user polls
the classes to obtain the fault statistics. This automation makes it possible to model large

systems more easily.

3.2 Architecture

DEPEND is an integrated design and fault injection environment. [t provides facilities to
rapidly model fault-tolerant architectures’ and conduct extensive fault injection studies. Figure
3.1 shows the DEPEND architecture. DEPEND can be executed on various hardware platforms.
The hardware specific code is contained in the simulation engine which provides a pseudo-
parallel run time environment. The objects provide the skeletal framework with which a user
can rapidly build a simulation model for fault injection and dependability analysis.

DEPEND is a functional, discrete-event, process-based {37, 60] simulation tool. The system
behavior is described by a collection of asynchronous processes that interact with one another.
These processes (also called coroutines) are independent threads of execution that can be sus-
pended and resumed at user specified points in the code [53]. The simulation engine implements
processes entirely at the user-level without operating system services. As a result, the processes
are light weight and do not execute simultaneously. The simulation engine provides a pseudo-

parallel environment. It does this by sequentially executing all processes scheduled to run at
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Figure 3.1: The DEPEND architecture.
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the same time and then incrementing the simulation clock. The current version of DEPEND
uses CSIM to support the process-based paradigm and the pseudo-parallel environment. CSIM
uses a single function call stack for all processes. When an active process is suspended, its run-
time stack frames and registers are copied into its static process control block. When a process
is resumed, the saved stack is copied back onto the runtime stack and the saved registers are
restored [15]. The original CSIM has been modified to support fault-injection and the ability
to abort, reschedule and kill processes.

An alternative to process-based simulation is event-driven simulation where a system is de-
scribed by a set of events and their associated actions. Even though process-based simulation
has a large context-switching overhead not present in event-driven simulation, it was selected for
several reasons. It is an effective and intuitive way to model system behavior, repair schemes,
and system software in detail. It facilitates modeling of inter-component dependencies. espe-
cially when the system is large and the dependencies are complex, and it allows actual programs

to be executed within the simulation environment with minimal retrofitting.

3.2.1 User Environment

The steps required to develop and execute a model are shown in Figure 3.2. The user writes
a control program in C++ using the objects in the DEPEND library. The program is then
compiled and linked with the DEPEND objects. The model is executed in the pseudo-parallel
run time environment. Here, the assortment of objects including the fault injectors. CPUs
and communication links execute simultaneously to simulate the functional behavior of the
architecture. Faults are injected and repairs are initiated, according to the user’s specifications

and a report containing the essential statistics of the simulation is generated.

3.2.2 The Object Library

The object library contains fundamental and complex classes. A fundamental class is not a
derived class. A complex class may be a derived class, it may consist of a combination of

several classes or both. The classes were designed with four criteria:

e Simulate the general behavior of a computer system component ( Decomposability & com-

posability).
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Figure 3.2: Steps in developing and simulating a model with DEPEND.

Name Description
Event Basic synchronization mechanism. Processes wait at and set events.
Active_elem Simulates a server with various queueing disciplines (FCFS, round-robin,

etc.). Processes queue at server to model resource contention.

Injector Automatically injects faults based on statistical distributions and trace files.

Fault Reporter | Compiles fault statistics. Displays MTBF, MTBR, availability and coverage.
Generates output of every fault injected and repair attempted.

Table 3.1: A few fundamental classes.

e Allow users to specify key parameters (Parameterization).
e Provide default functions to minimize design time (e.g. fault models, sparing policies).
e Permit easy reuse.

The faundamental classes provide basic functions like injecting faults and compiling statistics.
Some key fundamental classes are described in Table 3.1. Complex classes created from these
fundamental classes simulate components found in fault-tolerant architectures. Such compo-
nents include CPUs, self-checking processors, N-modular redundant processors, communication
links, voters and memory. This kernel of classes can be combined and replicated to simulate a

wide range of fault-tolerant architectures.
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Name Description

Voter Simulates a basic voter with timeout. Default voting scheme: byte by byte
comparison. Allows user defined voting algorithms.

Server Inherits Active_elem. Simulates server with spares. Three sparing policies:
no spare, graceful degradation, stand-by sparing. Automatic repair and
reconfiguration. Automatic injection of faults.

Link Simulates communication channels. Several fault types: link dead, packet
corruption, packet loss and user defined faults. Automatic retry.

NMR Simulates dual self-checking, triple-modular redundant and N-modular re-
dundant components.

Fault Manager | Simulates software fault management schemes. Logs faults and shuts off
components which exceed their fault threshold.

Table 3.2: Some key classes that model the architectural components of a fault-tolerant system.

Table 3.2 lists a few complex classes in the library. A detailed description of all classes can
be found in [22]. The next subsection describes the basic fault models provided by DEPEND
and the following subsections present three essential classes in the library: the fault injector,
the fault-tolerant server, and the fault-tolerant communication link. This is followed by an

example simulation program.

3.2.3 Fault Models

Functional fault models are used to simulate the system level manifestation of gate-level faults
such as stuck-at faults. Functional fault models are used because they are best suited for system
level fault injection where the focus is on the behavior of a component due to a fault. Fur-
thermore, at this high level of integration, gate-level implementation faults become prohibitive
[14]. Functional testing approaches and fault models for microprocessors have been presented
in [69, 65, 52]. DEPEND provides four types of faults which can be used to simulate specific

fault behavior:
e Status faults.

e Process faults.
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e Server faults.
e Data faults.

The simplest fault is the status fault. It is called a status fault because a flag is set to
indicate that the status of the component is faulty. Methods of the injected component’s class
can be queried to determine its state and, based on the status, specific fault actions can be
invoked.

A process fault either aborts or kills a process. Aborting a process entails dequeuing it from
an event or server queue, setting the “aborted” flag in its program control block (PCB) and
returning ;:ontrol to the process. The process can then poll its “aborted” flag and if set take
special action. Killing a process entails dequeuing the process, releasing all resources it has
acquired, and destroying its PCB.

A server fault can be injected into any class that is derived from the Active_elem class (see
Table 3.1). A server fault causes the server to abort all processes queued for service and update
its fault and performance statistics. The aborted processes can then take remedial action such
as rollback or restart to simulate the effect of the fault.

When actual programs are executed with DEPEND, the data fault can be used to corrupt
data elements used by the program. Given a mask, a size and a pointer to the data region, a
byte is selected randomly from the region and XORed with the mask.

Note that these basic fault models are general and only interrupts the simulation (e.g. stops
a server and dequeues all requests). All specific fault models, including the default fault models
provided with DEPEND classes, are built from these core fault models. For instance, the data
fault model is used by FT_link (see below) to corrupt the contents of message packets routed
by the link. The basic fault models or the default fault models provided with a class can be
specialized by the user to create more specific fault models. These fault models can be derived
from low-level simulations or from measurements of existing systems. For instance, Choi [10]
simulates a processor at the gate-level and executes a workload while injecting transient faults.
The results of the faults on the behavior of the workload and the failure mode are stored in a
fault dictionary. The fault dictionary can then serve as the basis for the processor’s system-
level fault model. Each time a process is aborted due to a transient fault in a server, one of the

failure modes can be selected randomly and used to model the process’s failure mode.
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3.2.4 Fault injector

The fault injector is a fundamental object of DEPEND. It encapsulates the mechanism for in-
jecting faults. To use the injector, a user specifies the number of components, the time to fault
distribution for each component, and the fault subroutine which specifies the fault model. The
distributions supported are constant time (mostly used for debugging), exponential, hyperex-
ponential and Weibull. The object also allows user specified distributions. When initialized,
the injector samples from a random number generator to determine the earliest time to fault,
sleeps until that time and calls the fault subroutine.

Initially, the injector used conditional failure distributions to determine the time to next
fault, under the assumption that a set of components have independent, identically distributed
failure distributions. For instance, for a system with two components using a gracefully de-
grading sparing policy, the time to failure of the second component, X, given that the first
component failed at time t is given by Pr[X < z|X > t]. For a Weibull time to fault distribu-

tion with rate parameter A and shape parameter «, the conditional distribution is:
PriX<zlX>t]=1~- ezp’\[(‘-'“)a'ta] (3.1)

This approach has several drawbacks. For non-exponential distributions, the conditional dis-
tributions become complex and cumbersome as repaired components are re-integrated into the
system or cold spares are activated. The conditional distributions depend on the sparing policy.
As a result, additional information regarding sparing policies has to be specified. The routines
used to generate random samples are more compute bound. Generating a random sample using
the inverse transform method for equation 3.1 requires and additional suBtraction and an extra
call to the math library’s power() function than for a Weibull distribution. For large simulation
runs, where thousands of faults are injected, the time spent on these additional calls becomes
significant.

The current version of the injector uses a table-based approach. An entry is kept for each
component, specifying its condition (OK, Failed), injection status (Injection off, Injection on},
time to fault distribution, and time to next fault. The algorithm used to determine which
component to inject is:

Initialize (performed one time)

do for all components

17



it (component is 0K & On)

compute and store time to fault
else

time to fault is oo
end if

end do

Main body
do forever
find minimum.time.to.fault among components
sleep (minimum_time.to_fault - current.time)
if (sleep not aborted)
call fault subroutine
set time to fault of this component to oo
end if

end do

Any time a component is repaired or turned on, its time to fault is computed and entered
in the table. The injector is then awakened so that it takes the new component’s fault time
into account.

The table-based approach is versatile. The time to fault distributions of the components
do not have to be identical and any user specified distribution can be supported. For example.
the full “bathtub” reliability curve can be model with DEPEND. The table-based approach
automatically takes the age of each component into account without using conditional proba-
bility distributions and averts the problem with modeling local and global times found in most
analytical tools [71].

DEPEND provides a workload dependent injection facility to model the workload/failure
dependency observed in (7, 31]. It can be used to test systems under stress conditions. To
implement a workload dependent injection strategy, a statistical clustering algorithm is first
used to identify high-density regions of the workload. These regions (or states) are used to
specify a state transition diagram that characterizes the workload [29]. Associated with each
state is a visit connter which counts the number of visits to that state and a fault rate, A,
which the system experiences in that state. The user provides a workload function which the

injector polls periodically to identify the workload state and to update its visit counter. For
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example, the workload function may be the utilization of a processor or it may be any other
function that provides a measure between 0 (low workload) and 1 (high workload). Based on
an injection_interval specified by the user, the information from the state transition diagram is
used to estimate a weighted average failure arrival rate (Wgtlambda) as follows:

N
Wgtlambda = Z visit.ratio; X A

i=1

where:

N is the number of states

counter for state;
total visits to all states

visit_ratio; =

Once Wgt_lambda is determined, it is used to compute the probability of a failure injection

(P_inject(t)) over the last interval t (= injection_interval) as follows:
P.z'nject(t) =1- e—WgtJa.mbdaxt

The fault injector illustrates what we mean by “providing a simulation framework”. The
injector provides the basic algorithms and mechanisms needed to inject faults allowing the user
to concentrate on the application specific aspects, the fault model and the simulation of a fault.
Furthermore, the modular, object-oriented approach allows the user to easily experiment with
different time to fault distributions, fault models and workload functions. Other DEPEND
objects are similarly designed to provide the functionality that are commonly needed without

restricting the applicability of the object.

3.2.5 Fault-tolerant server

The server class, which is typically used to model CPUs and other processors, is an example
of a complex class (Figure 3.3) that is built from several elementary classes. It uses a fauit
injector class to inject faults, the active_elem class to model the behavior of a server, and other
classes to compile and output fault statistics. It inherits methods from active_elem to simulate
the acquisition, the use and the release of a server and to provide several service disciplines

including, first come first serve (FCFS), round-robin and pre-emptive round-robin.
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Figure 3.3: The Fault-Tolerant Server Object.

The server offers three sparing modes: the no spare mode, the graceful degradation mode.
and the standby cold sparing mode. In the graceful degradation mode, all the spares operate
on incoming requests. The entire server fails when all the spares become faulty. In the standby
sparing mode, only the primary server operates on requests. When it fails, a reconfiguration
takes place and a healthy spare becomes the primary server. The entire server continues to
function as long as there is at least one healthy server. The number of spares and the type of
sparing policy is user selected.

The server provides three default fault types: permanent faults, transient faults and user
defined faults. Transient faults last for a specified period of time, after which the server returns
to a healthy state where it can be used again. When a transient or permanent fault is injected
in a server, the server fault model is used to dequeue pending requests an place the server in a
hung state. Other fault models can be simulated by specifying user defined faults. To simulate
user defined faults, the server invokes a pre-specified fault method, written by the user, that
can simulate any fault action a user requires.

The user can customize the behavior of a server by specifying, among other things, the
reconfiguration time, repair coverage and the fault arrival rate. The user can also override the
default repair and fault behavior of the server by specifying user written methods to be invoked

when a fault or repair event occurs.
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3.2.6 Fault-tolerant communication link

Another complex class is the link shown in figure 3.4. It is designed to simulate various types
of communication links. It consists of a redundant set of communication links with redundant
connections from the links to the ports. The link is built from several classes. Instances of the
server class are used to model the ports and the links. An instance of the injector class is used to
inject faults. The rest of the link class consists of additional software to model the behavior of a
communication medium. The link transfers messages between specified ports. Once a message
reaches its destination port, it is queued until a process dedueues the message by invoking
the receive() method and providing the port number. To initialize a link, the user specifies:
the number of redundant links and redundant connections to the links, the number of ports,
the time required to send data via the links and the types of faults to be injected. The class
offers automatic retry. Messages sent back and forth contain checksums. If a checksum error
is detected by a receiving port, a negative acknowledgment is sent triggering a retransmission

of that message. The number of retransmissions is user specified. Several default fault models.
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Figure 3.4: The Fault-Tolerant Communication Link.

including faulty link, faulty port, lost message and corrupted message are offered. The server
fault model is used to simulate a faulty link and faulty ports. A lost message is modeled by
failing to send the message to its destination. Messages are corrupted using the data fault model.
[f a link or port is fanlty or if a message is lost, the message does not reach its destination.
The sender times out waiting for an acknowledgment and then retransmits the message. Like

the server object, these default fault models can be overridden by supplying user written fault
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models. All the redundancy and fault-tolerant features described. are switch selectable so the
user has a range of options and can select from a simple link with no fault-tolerance to a link

with all the fault-tolerance capabilities described.

3.2.7 Programming environment

The C++ object-oriented language is used to specify a DEPEND simulation model. The C++
language was chosen as the user interface to DEPEND for several reasons. First, it means
not having to learn an esoteric simulation lariguage; only knowledge of C++ is necessary.
Furthermore, the entire C++ programming environment is available to the user. DEPEND
enhances C++ by offering simulation facilities not available through regular C++ constructs.
The user can use actual C++ or C programs as a part of the simulation model. This makes it
possible to test proto-type software algorithms within DEPEND. C++’s strong type checking
makes it easier to write large simulations efficiently with fewer bugs than other languages.
Finally, C++ produces efficient code, and the C++/UNIX environment is widely available.

Figures 3.5 and 3.6 show a simple, example program that illustrates the programming
environment and some of DEPEND’s features !. The program models two processes that
communicate via a fault-tolerant communication link. The link is declared in line 2 to consist
of 2 links, using the graceful degradation spareing mode. There are two ports connected to the
link and each port has an additional spare port. The create() statement in routines sim() and
receiver() distinguish them from ordinary C++ subroutines. sim() and receiver() are light-weight
co-routines that execute in a pseudo parallel environment. Each time the create() statement is
executed an instance of the co-routine is created.

The main co-routine initializes the link. Lines 8 through 13 specify the cost of sending a
message, the time to send acknowledgments and that automatic retry is desired. Lines 14-17
specify the percent of messages lost and corrupted and they also specify the range of bytes (from
the beginning of the message) that can be corrupted and the mask to be used. If these two types
of faults are not sufficient, the user can opt to specify his or her own fault routine by removing

lines 16 and 17 and including line 18 (* //”is a C++ comment delimiter). Lines 19-22 specify

the failure rates and distributions of the ports and the links. By default, permanent faults are

"The program is written in “pseudo” C++ for simplicity and ease of understanding.
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01) #define NUM 2

// link with one spare and two ports and 1 spare port for each port

02) FTdink In (“link”, FT.GRACEFUL.SPARE, 1, 2, 1);
03) Event done(“event”);

04) int cnt;

05) void main(int arge, char* argv(])

06) {
o7)

08)
09)
10)
11)
12)
13)

14)
15)
16}
17)
18)

19)
20)
21)
22)

23)
24)

25)
26)
27)
28)
29)

create( “main” );
void recv(int);

In.msgxferr-time(10.0, 0.01);
In.set.checksum();
In.set.autoretry();
In.set.num-try(3);
In.set_timeout(500.0);
In.set.reply xfer(10.0);

In.msgloss(0.01);

In.msgcorrupt(0.05);
In.set_corrupt.range(0, 6)
In.set_mask('2’);

// In.set_msgfault func(&my fault func);

In.port.exp-inject (0.000001);
In.port switch.time(1000.0);
In.portswitch.coverage(0.999);
ln.set-weibinject(x,y);

In.detailed_recordon();
In.finject start{);

for (i=1 to NUM)
receiver(i);

done.wait();

report();

In.fault report full();

// main control program

// 10 units startup, 0.01 per/byte cost
// checksum the messages

// retransmit if there is an error

// retry 3 times before giving up

// wait 500 units for ack

// 10 units to send reply ack

// 1% msgs lost

// 5% msgs corrupted

// corrupt any of 1st 7 bytes of msg
// XOR byte with mask = ‘2’

// optional, user selected fault

// failure rate of port

// time to switch to a spare port
// prob. switch is successful

// Weibull failure rate for links

/{ detailed record of all injections
// start the injector

// start processes that send and
// receive msgs at these ports
// wait for simulation to end

// produce fault report

Figure 3.5: A simple example program using DEPEND - the main co-routine.
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30) void receiver{int port.id)

31) { create( “recv”); // this is a co-routine - not a subroutine
32) int stat, finished = 0;
33) while ('finished && In.condok()) {
34) .... do computations ...
35) .... put results into msg ...
// send( to, from, msg, size )
36) In.send((port.id+1)%NUM, port.id, &msg, sizeof(msg));
37 int reply = In.receive(id, msg(id], stat});
38) if (stat) {
39) ... received message without error ...
40) ... do more computation ...
41) } else {
- 42) ... message as error — take remedial action ...

43) }

}
44) cnt-;
45) if (cnt == 0)
46) done.set();

}

/™ optional fault routine to do specific fault injections
47) void my faultfunc(int &msg)
48) { .... code to corrupt fields in the message ... } */

Figure 3.6: A simple example program using DEPEND - the co-routine.

injected into the ports and links because a fault type has not been specified. If transient faults
or user defined faults are injected, repair times, coverage and user defined fault subroutines for
link and port faults can be specified.

The main co-routine creates two of the receiver() co-routine (line 26) and then goes to sleep
waiting for the event done to be set before printing the performance (e.g., throughput, response
time etc.) and fault (e.g., MTTF, availability, fault and repair times) reports.

The general structure of the receiver() co-routines is shown in lines 30 through 46. Each co-
routine performs some computation, puts results in a message and then sends it to the tandem
co-routine. Each co-routine then waits for a return message, performs additional computations
and repeats the entire process until all computations are complete or until the communication
link fails (i.e., both links are failed or 1 port has failed). The last co-routine to complete wakes
up the main co-routine by setting the done event.

The detail of the simulation model depends on the user. For the computations (line 34, 35,
etc.), the user may choose to simply forward the simulation clock and the data in the messages
may be fake, meaningless values, or the user may execute actual code and send real data back

and forth, making it possible to test actual programs such as algorithm-based fault-tolerant
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programs, communication protocols and the like. Such an approach was used to determine the
fault sensitivity and failure behavior of two load balancing heuristics operating in a distributed
system [20].

The simple example in Figures 3.5 and 3.6 illustrates several basic features of DEPEND.
DEPEND provides the framework and the general behavior of the fault-tolerant communication
link. The specific behavior is controlled by the user by providing key parameters, specifying
options and by furnishing fault subroutines. The user is relieved from simulating the operations
of the simulation medium, the ports, the checksumming logic, the automatic retry logic and the
injection of faults to the links, ports and messages. Several methods are available to interact
with the class and react to important events such as link and port failures. The example shows
two methods: a polling function that returns the status of the link (cond-ok(), line 33) and a
status variable returned by the class (stat, line 37). In addition to various other polling functions
such as functions to determine the status of the ports, the number of messages that have been
corrupted and the overhead of sending acknowledgments, there are signals that are set any time
failures and repairs occur. Co-routines can sleep until these signals are set and then wakeup
and perform specific tasks.

The example also demonstrates that the impact of different number of spares, different fault
arrival rates and distributions and repair coverage can be easily modeled by simply changing a
few parameters. A larger, common-bus system consisting of several ports and receiver() routines
operating on these ports can be quickly modeled by increasing the number of ports (line 2) and
appropriately increasing NUM (line 1). Distributed algorithms can be tested for correctness and
to determine their reaction to faults in the communication medium. Other architectures, such
as the hypercube, can also be modeled by creating several instances of the link class. one for
each link in the cube. By modifying the link declaration, a comparative performability study
can be conducted to determine whether the cold spareing or the graceful degradation spareing

mode is best suited for a particular application. .

3.3 Comparison

Table 3.3 compares the features of several simulation-based system level dependability analysis

tools. Rainbow Net and Metasan are purely probabilistic tools. NEST and REACT allow both
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Simulation Execute | Software | Process | Data Simulation
Tool Functional | Probabilistic Code Model Faults | Faults | Acceleration
NEST Vv v v
RAINBOW NET Vv
METASAN v
REACT v v
DEPEND v v v v v v v

Table 3.3: Comparison of the features of several simulation tools.

functional and probabilistic simulation, and NEST can execute actual routing algorithms. How-
ever, neither tool provides facilities to inject process or data faults. Only DEPEND provides
an environment to represetn application software at an abstract level and use it to perform
application specific system analysis in the early design phase when actual code does not ex-

ist. Furthermore none of the tools provide acceleration techniques to reduce simulation time

explosion.
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Chapter 4

Tool Capabilities

This goal of this chapter is to answer the following questions with two examples. Given the
large number of analytical tools and petri-net based simulation tools, what is the need for
functional (behavioral) simulation tools for system level dependability analysis? What addi-
tional information and capabilities can they provide over analytical tools and fault-injection

environments?

4.1 Behavioral Modeling

Analytical and Petri-net tools only use probabilistic modeling to represent system behavior. In
essence, these tools pre-define a system’s fault behavior with probabilities and distributions.
Because DEPEND also allows behavioral modeling, the fault behavior of a system does not
have to be pre-defined. Rather, with DEPEND, the fault behavior can be determined from the
simulated system. This section presents a study conducted with DEPEND to illustrate this
claim.

A distributed system using a centralized, prediction-based load balancing heuristic is evalu-
ated under various types of faults. The heuristic has been shown to be very effective in reducing
the mean response times of the processes under normal oﬁerating conditions [26, 20]. The ques-
tion is how will it perform if the system is subjected to faults? Will the load balancing heuristic
make the system less robust? Here the measure of robustness is the mean response time seen by

the processes. To answer these questions, DEPEND is used to simulate a distributed system.
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Figure 4.1: Distributed system executing the load balancing heuristic.

Because actual code can be executed within DEPEND, the complete load balancing heuristic,
written in C++, is executed upon the simulated system.

The distributed system was simulated using one link class to represent the communication
channel and several servers to represent the nodes in the system (Figure 4.1). Processes arrive
at node 0 where the load balancing heuristic assigns it to a node estimated to provide the lowest
response time. The assignment decision is based on the resources the process is predicted to
use and the current assignment of processes to the nodes. This information is maintained in
a database in node 0 (Figure 4.2a). When a process completes, its actual resources used is
sent, via a status message, to node 0 where it is used to update the process’s resource usage
history and delete its entry from the process assignment table (Figure 4.2b). Each process is
represented by its CPU and I/O requirements. A trace file obtained from measuring the CPU
and I/O used by processes executing on a VAX 11/780 (running 4.3Bsd UNIX) over a period
of one week is the source of the processes. Details about the heuristic can be found in [20].

The load balancing heuristic is started and processes are fed into the system. Meanwhile.
the default fault models in the link and server classes are used to corrupt fields in the status
messages, destroy status messages and fail node 0 and erase its database. These faults corrupt
or destroy the database and ultimately impair the assignment decisions made by the load
balancing heuristic. The mean response times of the processes are measured to determine the
impact of the faults.

I[f a purely probabilistic modeling tool were used for this study, the user would have to

pre-specify:
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a. Scheduling Node’s Database

Process Resource Process assignment
Usage History Table
Processes  Previous CPU & /O Usage History Node O Node1 ... Node n
cc0.2/100 make 1.2/ 250 s2sim 8.2/1110
Is we 0.001/500 awk 0.005 / 500
'd 0.03/800

grep

G

state transition diagram maintains
past resource usage of each process
and is used to predict future resource
usage.

b. Status Message

Corrupt

-

List of Completed Processes

process: make

P
B o

processes assigned to each node and their
predicted resource usage is stored in the table
and used to determine where to place the
next process that arrives.

Status message sent by all nodes to node 0.
Contains list of all processes that have
completed and the actual resources they used.

Figure 4.2: Database maintained by Node 0 and the status messages it receives.
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¢ the probability that a fault will corrupt the database.
e how each fault will corrupt the database.

¢ which portions of the database will be corrupted.

e quantify the extent of corruption.

¢ quantify how each corruption will impair the placement decision made by the load-

balancing software

Needless to say, these factors are extremely difficult to obtain without a thorough prior fault
injection study and they pre-define the fault behavior of the system. Because DEPEND executes
the actual software, these parameters are the results of (and not inputs to) the fault-injection
experiment. Only the fault arrival rates and the types of faults injected need to be specified.
Thus, DEPEND can identify the failure mechanisms, obtain failure probabilities, and quantize
the effect of faults. It can be used to select the key features that must be modeled and help to
determine and specify both the structure of, and the parameters to analytical models.

Only a summary of the results of the fault injection experiments are presented in this section.
Detailed results can be found in [21]. The fault injection experiments show that unless errors
are injected into the node 0 in rapid, sustained bursts the impact on response time is minimal.
This finding indicates that the database is regenerated quickly after each fault and there is no
need to save a backup copy. The impact on response time when status messages are corrupted
is shown in Figure 4.3. Interestingly, as the percent of messages corrupted increases beyond a
certain point (about 10%), the increase in response time reaches a plateau. Once more than
10% of the messages are injected, the database becomes so corrupted that the assignments are
made randomly and further corruption has little impact. This behavior shows that the heuristic
is robust and there is no need for additional, expensive fault-tolerant mechanisms.

A single distinguishing advantage of behavioral modeling over probabilistic modeling is
accentuated in the results obtained when status messages are destroyed. Figure 4.4 (the curve
labeled ‘before’) shows that the degradation in response time continues to increase without
reaching a plateau. Upon close examination, the increasing poor performance was found to
be caused by an implementation detail of the load balancing heuristic. Once the heuristic was

modified, the erratic increase in the response time ceased. Thus by using behavioral modeling, it

.
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Figure 4.3: Impact of corrupted status update messages.

was possible to not only quantize the impact of the various faults, determine whether additional
fault-tolerance mechanisms are needed if the system is operated in an adverse environment. it
was also possible to verify the heuristic and identify a design feature that makes it susceptible
to a specific fault type. Not only are such studies beyond the range of analytical tools. to the
authors’ knowledge, this experiment would be difficult to conduct with software fault injection
tools like FERRARI [36] and FIAT [18] because they cannot evaluate software running on

distributed systems.

4.2 Modeling Real Fault Scenarios

DEPEND uses a combination of behavioral and probabilistic modeling to simulate many re-
alistic fault scenarios. In this section, a simple example is used to illustrate how DEPEND
models latent errors that can substantially degrade system reliability. Latent errors can remain

nndetected in a system for long periods of time and are a potential hazard [8]. A measurement
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Figure 4.4: Impact of destroyed status update messages — before and after design change.

study of a VAX 11/780 [9] has shown the mean latency of an error can be in the order of min-
utes (¢ = 44min., 0 = 29min.) during peak hours and to several hours (u = 8hrs., o = 4hrs.)
during off-times.

Modeling latent errors is difficult with Markov models for several reasons. First, the state
space of the Markov model can be large for even small systems if each latent error and its location
within a component is represented. Second, simplifying assumptions such as independent repair
processes must be eliminated in order to accurately evaluate the impact of latent errors. For
example, in a self-repairing system like the Tandem Integrity S2 {detailed description can be
found in Chapter 5), the healthy processors reconfigure or repair a failed processor. If latent
errors are detected in the healthy processors during a repair, the system fails. Modeling this
inter-component dependence typically requires that the entire CTMC, its failure and repair
process, be evaluated together thus potentially leading to large, stiff models. In [16], the
authors present a novel decomposition techniqtie to avoid such large, stiff models. With their

approach, the repair coverage is evaluated in isolation and then ‘adjusted’ to account for the
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Figure 4.5: The error injection process that models error latency.

probability of a second, independent error in another component. The example below extends
this analysis to also evaluate the impact of near-coincident errors due to latent errors in a

repairing CPU. To do this, the example models the inherent dependencies that exist among the

system components.
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Figure 4.5 illustrates how latent errors are injected into a system with three processors.
DEPEND uses a chronologically sorted queue to maintain the latent errors injected into the
system. Among the information associated with each latent error include the time at which
the error is injected, its location (the component and memory address), and its latency period.
Typically, the errors are detected when their latency period expires. However, the errors can
be detected earlier by the repair process. Fault injection experiments of the Tandem Integrity

S92 have shown that latent errors in the repairing processor are detected with high probability

(1-n
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Figure 4.6: The repair process that considers the state of the other CPUs in the system.




| Description | Value assigned |

Error Arrival Rate, )\, 0.01388
Repair Rate, p 30.0
Percent Transient error, 7 0.99
Repair coverage, § 0.98
Latent error in system space, € 0.05
Latency for system space, exponential with mean 15.0
Latency for application space, exponential with means 1,2,4,6 &8
Prob. Failure due to latent errors in repairing CPU, ¥ 0.1

Table 4.1: The parameters used. All times are in hours.

during repair and reconfiguration because much of the system is exercised during a repair.
Figure 4.6 is a flowchart of the repair process that models this phenomenon. It is invoked
each time a latent error is activated. Note that the repair process models near-coincident
errors caused by a second, independent error in another processor (box 1). The dynamic
determination of the repair coverage which depends on whether there are latent errors in the
repairing processor is shown in boxes 2 and 3. To reiterate, by storing latent errors in a queue,
DEPEND can dynamically model the actual activation time of latent errors which is dependent
on: 1) the component the error is located in, 2) the location within a component, 3) the failure
rate of the components in the system, and 4) the system’s repair scheme.

The example is evaluated under three different conditions. First, permanent and transient
errors with no latency are injected (M1). Second, near-coincident errors due to a second.
independent error in another processor is modeled but error latency is not considered (M2).
The decomposition technique in [16] model this second condition. Third, the simulation model
described above is evaluated. It includes the conditions in M2, and it also considers near-
coincident errors caused by latent errors (M3). The specific parameters of the models are
listed in Table 4.1. Figure 4.7 shows a 33% decrease in MTTF when latent errors and their
impact on system reliability is taken into account. The result emphasizes the importance of
modeling real phenomenon such as latency, and it demonstrates that by so doing, more precise
evaluation of fault tolerant mechanisms and repair schemes are possible. Later, in Chapter 7,
the “staggered machine failure” phenomenon found to be caused by correlated errors [73] is

mimicked by injecting correlated errors with different latency times. This more faithful model
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is found to produce MTTF figures that are an order of magnitude larger than those produced

with traditional models that assume correlated errors are detected simultaneously.
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Figure 4.7: Comparison of system MTTF for the three models.

4.3 Discussion

This Chapter uses two examples to highlight the benefits of using DEPEND during the in-
termediate stages of system design. With analytical tools and petri-net tools a system’s fault
behavior must be pre-defined. DEPEND’s integrated fault injection and functional simulation
environment allows detailed modeling of system behavior and fault injections that help deter-
mine the system’s fault behavior. The first example demonstrates how software behavior under
hardware faults can be studied and how DEPEND can also be used to verify the software and
identify design features that make it susceptible to particular fault types. The second example
illustrates how accurate modeling of realistic fault scenarios and the ability to consider the

inter-component dependencies provide significantly different MTBF measures than those ob-
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tained when these issues are not considered. The ability to perform these sorts of studies in the

early design stages is crucial to ensuring that a system meets its dependability specifications.

36



Chapter 5

A Case Study

This chapter describes the Tandem Integrity S2 fault-tolerant system. It also presents the simu-
lation model of an S2 like system developed with DEPEND. The primary reason for selecting the
Tandem Integrity S2 as the target system is that we have a hybrid injection and measurement
environment [75] for an actual Tandem Integrity S2 machine. With this hybrid environment,
injection experiments on the actual machine are conducted and used to validate the simulation
methods and the models developed. A brief description of the hybrid environment and the

setup used to conduct the validation experiments can be found in chapter 6.

5.1 The Tandem Integrity S2 Architecture

The Tandem Integrity S2 fault-tolerant system (34] is shown in figure 5.1. It is a triple modular
redundant system (TMR). Each CPU is a MIPS R3000 RISC processor with an on-chip virtual
memory mechanism and a separate clock. The processors execute the same instruction stream
simultaneously. The processors are synchronized and their requests are checked by the voter
when global memory is accessed, /O is performed, or 2047 cycles have elapsed. If there is a
discrepancy during voting, the processor in disagreement is shut down. The faulty processor
performs a power-on self-test (POST), and if successful, the system is halted and the contents
of the good processors are copied to it. The POST takes approximately 70 seconds and the
re-integration takes approximately 2.0 seconds for a system with 8 Mbytes of local memory.
The local memories in the Integrity S2 do not have parity or ECC circuitry. The Integrity

$2 relies on memory scrubbing to correct transient memory errors. The TMRC contains the
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Figure 5.1: The Tandem Integrity S2 processing subsystem.

Percent of Time | Re-integration
CPU is Idle Time
99% 30 sec.
59% 2 min. 25 sec.
37% 3 min. 46 sec.
27% 4 min. and 5 sec.
16% 4 min. and 40 sec.
0% 5 min. and 29 sec.

Table 5.1: Measured global memory re-integration times with varying machine idle percentages

voter and up to 128MB of global memory. The primary function of the TMRC is to vote upon
the transactions sent by the CPUs. The global memories are protected by parity. When a
parity error is detected by the TMRC, the backup memory takes over. A global memory is re-
integrated in the background, interleaved with ordinary processing. The re-integration time is
load dependent. Table 5.1 contains the measured re-integration times from a system with 32MB
of global memory. Global memory re-integration has lower priority than CPU re-integration

and is aborted and restarted in case of a CPU re-integration.
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5.2 Simulation Model

To develop an accurate simulation model of a Tandem Integrity S2 like system, several key

characteristics of the Tandem Integrity S2 system are simulated. These include:

1. the loose synchronization policy of the Integrity system. The fact that the processors
idle at the voters to synchronize and the exact time needed by the voting operation are

accounted for in the model.

2. the CPU (with its local memory) and the global memory structure that is unique to the

Integrity system.

3. the functional behavior of the error-detection mechanisms of the CPU and global memory

structure.

4. the CPU off-line POST and the on-line re-integration process and the global memory

background re-integration process that are unique to the Tandem Integrity.

5. the behavior of the Tandem Integrity when a CPU and global memory re-integration

occurs simultaneously (prioritized re-integration).

These details of the system architecture and how it reacts to faults were determined by studying
its layouts, descriptions and manuals, discussing the matter with its designers and conducting
several fault injection studies (in addition to the validation experiments mentioned below).
Simultaneous injections into various components of the system helped to uncover interesting
characteristics of the system that were subsequently incorporated into the Integrity S2 simula-
tion model.

The simulation model of the Tandem Integrity S2, developed with DEPEND, is shown in
figure 5.2. The blocks on the right are the DEPEND classes used in the simulation model. The
block on the left summarizes the program written to create the simulation model and control
the operations of each of the components.

The NMR class in the DEPEND library is the primary object used in the simulation. The
NMR class simulates dual self-checking, triple-modular redundant and N-modular redundant
systems. The servers idle until they receive a task to process. They then execute for a specified

time period and feed their results to the voter. The voter waits for all the servers and then

-
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executes a voting algorithm. A timeout condition is used to prevent hanging in cases where a
server fails to report to the voter. The NMR class provides two voting algorithms: bit stream
voting and error based voting. The bit stream voting scheme performs a bit by bit comparison
of the data deposited by the servers. The error based algorithm flags a server’s result as being

faulty if an error has been injected into the server. This option was used in this simulation

Control Program DEPEND objects
run 2047 cycles
. Processing Core
Initialize objects - specify parameters a0 pose ng NMR
set exponential injection fault injector
specify error arrival rates re-integzate 1 1T T
specify re-integration times
. . reboot
specify number of servers in each TMR server server server r
1 2 3 ] o
etc.
fault or fail 4
Start each object signal Py
r
loop until done: voting complets voter
signal
do 2047 instructions
wait for voting to complete
error bassd
if faulty processor initiate POST voting Global Memory NMR
call global memory's error based fault injector
voter reboot
if faulty global memory initiate L 1
reintegration re-integrate
if any subsystem has failed server server r
reboot the system 1 2 °
. . fault or tail ! D
if processor ready for re-integration signal .
hait system and re-integrate 1
fast forward to next event voter r
end loop

Figure 5.2: Simulation model of the Integrity S2 system developed with DEPEND.

because the processors were not given real data to process. The NMR shuts down the servers
with faulty results. Automatic repair schemes are not provided, but functions can be called
to repair the individual servers. This feature is used to simulate the automatic re-integration
feature of the Tandem Integrity S2. The NMR’s fault injector injects latent and correlated
errors.

The processing core of the Integrity S2 is simulated with a NMR class containing 3 servers.
Each server simulates a processor board containing a CPU and a local memory. The NMR’s

injector is used to inject errors into both the processor and the local memory.

.
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The two global memory boards are simulated with a NMR with 2 servers. Every 2047
cycles, when the processors synchronize, the global memory’s error based voting function is
explicitly invoked by the control program to check each server and shut down any that has
an active error. This simulates the actual operation of the Integrity S2 system because parity
errors in the global memory are detected when the processors synchronize at the voter to access
global memory.

The control program in figure 5.2 is the only part that is written by the user. It de-
clares instances of the two DEPEND objects and initializes and customizes them. Initialization
consists of specifying the error arrival distribution, the error arrival rate, the error latency
distribution and so on. Then each object is “started” causing them to automatically perform
tasks based on the parameters specified. All actions are automatically logged and the user can
call functions to obtain a detailed report of every fault or repair. In addition, statistics such as
availability, MTBF, the number of faults injected, the mean time between repair and the repair
coverage are available.

The control program simulates the execution of 2047 instructions and the voting process.
If any detectable errors are found in any of the components during voting, the components
are shutdown. The status of the system is checked to determine whether it has failed (i.e.
two CPUs or both global memory boards have failed). If the system has failed, it is rebooted
and the simulation restarts. If the system has not failed, a background re-integration process is
started for any component that was shutdown earlier by the voter. Finally, the control program
checks to see if re-integrations initiated in an earlier cycle has completed. If so, they are handled
based on the component type (CPU or global memory) as described in the previous section.
Though not shown in figure 5.2, the memory scrubbing process is also simulated. Although the
simulation can produce many results, the one we are most concerned with is the mean time
between system failures (MTBF).

To summarize, this chapter describes the Tandem Integrity 52 architecture and presents
the overall simulation model developed with DEPEND. The next two chapters describe specific
aspects of the simulation model such as the approach used to model software behavior under
hardware fanlts and the acceleration techniques used to execute the simulation and produce

statistically valid results.
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Chapter 6

Software Behavior Under Hardware

Faults

The impact of software on system dependability is a primary concern because software is a major
component of a system. One aspect is software reliability, which is concerned with design errors
in the software. Another aspect, and the focus of this chapter is the behavior and the effect of
software on hardware faults. In the early design stages of a system, a designer has a general idea
of the structure and the underlying algorithm of the application software, or has access to the
software that will be ported to the new system. An effective design strategy at this early stage
is to evaluate the system while executing an abstract representation of the application software.
This can provide key application dependent parameters that impact system dependability. [t
permits meaningful application specific evaluation and trade-off analysis of function and system
level detection and recovery mechanisms.

In this chapter, we present a simulation-based software model that uses a probabilistic control
flow graph to represent a program at an abstract level. The model is executed on a simulated
system to obtain application specific error latency distributions and evaluate two functional
error detection mechanisms. Error latency distributions obtained from the model are validated
by comparing them with those obtained from running the actual programs on the Tandem
Integrity S2 system. The impact of program control flow on error latency times is studied. a
model of the detection process of a RISC-based system is developed and the need for application

specific analysis of functional detection schemes is demonstrated.
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Many studies have evaluated the behavior of software under hardware faults [1, 11, 14,
36, 44, 48, 18, 75). Actual programs are executed on simulated or real processors in which
errors are injected. These studies require an actual system or a detailed model of the hardware
architecture. Tools like FIAT and FERRARI verify and study software systems by injecting
software-implemented faults into actual programs. Laprie (39] uses a Markov model to evaluate
the reliability of software systems during their operational life. The focus of the work is on
software design errors. In [64], a stochastic model of error propagation is developed with a
digraph that represents the interconnections between the hardware and software models. The
propagation times are based on random variables with general distributions. In (51], a control
flow graph automatically generated from syntactic analysis of a program, is used to estimate
execution times. DEPEND [24] and REACT ([12] provide a simulation-based fault injection
environment to analyze the dependability of hardware architectures. As such, there are no
mechanisms to study, at the early design phase, software behavior under hardware faults.

The software model presented runs within the DEPEND environment and extends DE-
PEND’s ability to study software issues in the early design stage [25]. The high-level abstrac-
tion greatly reduces simulation time explosion and permits hundreds of error injections within
seconds. Large observation periods are possible and allow collection of detection latency times
that are in the order of minutes. Such large detection latencies are typical of real programs. Col-
lecting them allows evaluation of detection schemes under realistic conditions. The contribution

of this work is a method to:

1. Create a high-level abstract representation of application software that can be used to

obtain application specific parameters that affect the dependability of a system.

2. Evaluate function and system level detection and recovery schemes within the context of

application programs.
3. Study the impact of program control flow on one parameter, the error latency distribution.
4. Develop a model of the detection process of a RISC-based processor.

5. Provide feedback early in the design phase.
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6.1 Model Overview

The software model environment is shown in Figure 6.1. The model consists of programs
that are represented by probabilistic control flow graphs, G, and a virtual memory system, M,
within which the programs execute. Contention for resources is modeled using the first-come-

first-served or round-robin scheduling discipline. Errors are injected into the physical memory

space.
Physical
Programs Virtual memory memory
p1 p1 virtual pages
p2 virtual pages
o Shared
location
p2
[ ]
. 4 | =— Error

pn virtual pages :
pn /
NNV
|
n
]
®
¢
( t
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Simulattie r
contention
( 0 > at resources N\

Figure 6.1: The complete software model execution environment.

The distinguishing feature of the software model is the virtual memory system M and the
link between G and M. The virtual memory provides two functions. First, it permits simul-
taneous execution of several programs allowing evaluation of their combined impact. Second,
it allows these programs to share pages in memory. Interprogram communication, and hence
propagation of errors among programs, is modeled with shared pages. In fact, the shared mem-
ory primitive can be used to model various communication paradigms. In [42], the authors

give a convincing argument for the claim that “variable sharing” is a close reflection of com-
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puter hardware and it is a primitive upon which all other realizable distributed models can be
described.

The error occurrence process is modeled by injecting errors into the physical memory and
allowing the simulated execution of G, to discover the error. Manifestation of transient hardware
faults are modeled as memory errors. A similar approach was taken in [44], in which the authors
model all control flow errors as memory errors. The model is realistic for faults in the memory
subsystem, however, it can also be applied to several types of faults in the processor. For
instance, a fault in the ALU can propagate, eventually manifesting as incorrect data written
to memory. Similarly, errors in the bus can cause incorrect data to be written to memory or
written to the wrong location. Errors in memory mapped registers and /0 devices can also be

represented by memory errors.

The user provides a control flow graph of an algorithm, the location of the memory accessed
by each node and the total virtual memory used by the graph. The memory access pattern is
derived from the graph. The model is hierarchical allowing designers to refine their abstract
program models as more information is available. The software model simulates the execution of
the graph on the underlying hardware. Outputs of the model include detection latency times.
error propagation times, the probability of error propagation, and detection coverages. The
software model is intended for use in the early design stages when an actual system does not
exist and details of the applications are not known. It is not meant to replace fault injection

studies of existing systems.
6.2 Model Description
The software model SW is defined as
SW =(M,(G,S,Ez)*, )}

where:

e M is the virtual memory system.

e G is a probabilistic control flow graph (PCFG).

'The unary operator ‘+’ means “one or more instances of.”
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o S is the subspace in M, allocated to G.

o Ez is the execution environment given by:

( . . . . . .
Fzpy error  Simulates execution of G in a multiprogramming environment.

Eziezt error Executes G and simulates detection of errors in the text space of

G.

Ez = 4 Ezieztdata Executes G and simulates detection of errors in the data space

of G.

Ez,0pagate Executes G and simulates detection and propagation of errors.

\

e | is an injector which injects errors into M.

6.2.1 The Memory System

A paged virtual memory system is simulated and is defined as M = (V,,,, Py,), where, V,,, is the
virtual memory and Py, is the physical memory. A virtual memory system allows more than

one G to execute simultaneously and share pages. The functions that operate on M are:

. access_memory(PID, v, vend) — Maps the virtual block < vpeq, veng >
of a PCFG indicated by PID to a physical block < pjeq,Pend > in P,. The
address of the first error encountered in the range < ps.q, Pena > is returned.

If there are no errors, -1 is returned.
. inject_error(PID, v,) — The virtual address v, is mapped to a physical

address, p,, in P,,. A bit is flipped and location p, is marked as corrupted.
° inject_error(p,) — A bit in the word addressed by p, is flipped and p, is

marked as corrupted.

. erase_error(PID, v,) — The virtual address v, is mapped to a physical

address, p,, in P,. The word is corrected and p, is marked as uncorrupted.

. erase_error(p,) — The word addressed by p, is corrected and marked as

uncorrupted.

Function access_memory is used by Ez to detect errors in the memory accessed by a PCFG.
Functions inject_error and erase_error are used by the injector to introduce and correct

errors in the physical memory, P,,.
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6.2.2 The Probabilistic Control Flow Graph

G is a probabilistic control flow graph, G = (N, E'), where N is the set of nodes and E is the
set of edges.
Definition 3.1: The node set N = {ny,n3,...,nx} where n; is an abstract definition of a

program segment consisting of:
¢ Required:

name name or identification of the node.
text space location of node’s text in virtual memory, denoted by <

tXpeg, tXend >, the address of the first and last words.

exec time number of cycles to execute the node.
Pt probability of detecting an error in the text space on the first

encounter.
function function performed by the block (Read, Write, Read /Write,

10, Err_correct, Err_detect, Checkpoint)

¢ Optional:

data space location of data blocks processed by the node denoted by (<
dtb,gl, dteng; >, ..., < dtbcgk» dt.nqr >) where < dtbcgp dt.ng; >
is the address of the first and last words of data block :. Data

can be located in shared memory space.

£d probability of detecting an error in data space.

Pprop probability of propagating an error in data space.

The optional parameters are needed only if the EZiezt data OF the EZpropagate €Xecution envi-
ronment is used.
Definition 3.2: The edge set E = {e1,ez,...,ex} Where e; is a directed edge defined as

e: = ((ni,nj), i, m4):

e (n;,n;) is an ordered pair of any two nodes in N with n; as the tail and n; as the head

of the directed edge,
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e a; is the probability of traversing the edge,
e m; is a count of the number of times the edge is to be traversed.

Definition 3.3: A simple edge e; is defined such that n; is not an ancestor of n;, n; # n;,
a; > 0,and m; = 0.
Definition 3.4: A loopback edge e; is defined such that n; is an ancestor of n; or n; = n,,
a; = 0, and m; > 0.

Definition 3.5: The set {; C E is the set of directed edges from node n, such that

Za,—:l, V,':e,'Eé';

=1

6.2.3 The Memory Subspace

S is the subspace of the total text, data and shared space in virtual memory allocated to G

and is given by:
S = (< Sy(tezt), S.(tezt) >, < Sp(data), S.(data) >, < Sy(shared), S.(shared) >)

where,

¢ Sp(z) = address of the first word of space z in virtual memory.

¢ S.(z) = address of the last word of space z in virtual memory.

6.2.4 The Execution Environment
A discrete-event simulator [60, 43, 24] is used to execute G in a simulated multiprogramming

environment. £z can be one of the following paradigms.

6.2.4.1 Execution without error detection

Ez.6_error models the probabilistic execution of G and is the basis upon which other execution

paradigms are built.
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Input: cycle_time, |Oserver_ID, CPUserver.ID

Function:

S1:

S2:

Assign PID to PCFG
Allocate text, data, and shared memory space in M
Traverse the PCFG
I = top most node in PCFG
while (I <> terminal node)
texterror.addr = memoryaccess(PID, text spacey)
it (data space; specified)
dataerror.addr = memory.access(PID, data space;)
server.time = exec timer x cycle_time
it (function; = I0)
reserve(|Oserver_ID)
hold(server_time)
release(IOserver_ID)
else
resexrve(CPUserver_ID)
hold(server time)
release(CPUserver_ID)

I = getnext node()

end while
where,
reserve() & simulate the queueing activity at a server.
release()
hold() increments the system clock.
get.next _node()

if (£ = {er,e,}, where ¢, is a loopback edge and
e, is a simple edge) then
if (m; > 0) then
decrement my
node_addr = head(e;)
else

node.addr = head(e,)
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else if ( €] = {e1,e3,....€;}, and &} contains no loopback edges) then
select e; € £ with probability o
node_addr = head(e;)

return{node_addr)

6.2.4.2 Execution with detection of text errors

EZiext_error is an extension of EZn,_.rror Which models the probabilistic detection of errors

present in the text space. It requires three additional inputs:

Additional input: detect_function, record_error, v

where,
detect function models the probabilistic detection process (see below).
record_error records pertinent statistics, such as the time of detection.
Execution can halt or continue after detection as specified by
the user (default: continue).
v parameter used by the detection function, 0 < v < 1.

Statements S1 and S2 of Ez.,_.rror are replaced with the following:

S1: error_detected = detect_function(

texterror.addr, v)

if (error_detected)

texterror.addr - tX;.q,
tXend; - tXpeq, + 1

x exec time; x cycle_time

server._time =

else

server_time = exec time; x cycle.time

S2: it (error detected)
record_error()
use server for the remaining time

I = get_next.node()
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In S1 above, the time to detection (server_time) is computed using a linear relationship based
on the location of the error within the text space. The detection function returns a FALSE if

the text_error_addr is -1. Otherwise it models error detection as follows:

detect_function:
increment err_pass
4 = U[0,1) -- a Uniform distribution
if (p, - y(9TT-PASS-1) < 4 AND err_pass < LIMIT)
return TRUE
else

return FALSE

where,
err_pass is the number of times the specific error is encountered.
LIMIT is the maximum number of encounters within which the error

must be detected.
The detection function decreases the probability of detection exponentially for v < 1. as the
number of encounters increases. The total probability of detecting an error. D. within A

encounters is:

D=3 D. (6.1)

k=1
where,

D. = pev (1= Dey), &>1

Pt k=1
The software model is designed to simulate and evaluate functional detection schemes. The
detection function presented here models the low level detection mechanism found in most
processors. Such mechanisms include mathematical exceptions (e.g. division by zero), bus
errors caused by invalid address or access types, and address error caused when an unaligned

word is fetched or stored. Later in this chapter, we show that the detection function accurately

captures the behavior of the low level error detection process for the programs modeled.
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6.2.4.3 Execution with detection of text and data errors

EZiezt_data 1 an extension of EzZiept_error- Identical service time calculations and detection
functions are used to simulate the detection of errors in the data space of a node. If the
function of the node is Write, then errors encountered in the data space are overwritten

with probability pq.

6.2.4.4 Execution with error propagation

Ezyropagate is an extension of EZ ezt _data Which simulates the propagation of errors. If an error
is not detected, then with probability pprop, it is propagated based on the function of the node
at which the error has occurred.

An error in the text space is assumed to cause a Read node to read the wrong data and
a Write node to write data to the wrong location. A Read node with an error causes m (an
input parameter) errors to be injected into the data space. This models the phenomenon that
a wrong word was read and used for computation thus propagating the error. For a Write
node, 2m errors are injected. One error is injected because the wrong location is overwritten,
and another because the correct location is not updated?.

An error in the data space of a node causes m errors to be injected into the data space if
the node’s function is a Read. If the function of the node is Write, the error in the data space
is corrected.

If a node’s data space has more than one data block, the block injected is selected ran-
domly. The parameter mn is typically 1. Since the data space of one node can overlap with
that of another, errors can propagate between nodes and within the memory space of a PCFG.

If a PCFG shares pages with other PCFGs, errors can propagate between them.

6.2.5 The Injector

The injector injects errors into the physical memory, P, using the functions described in
Section 3.2.1. The injector can be specified to inject one or many errors. If many errors are to

be injected, the user specifies one of the three error arrival distributions: constant, exponential

?Propagation for a Read/Write node combines the effect modeled for Read and Write. To keep the paper
concise, a detailed description is not provided.
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or Weibull. The range of locations to be injected must also be specified. The words injected

bind { pt 0.8; pd 0.5; sz 1000; sz half 500 }
memory{ data 0 1000; text 1001 1500 }

main() node main {
for i = 1 to 1000 node init WRITE 19 * sz pt 1001 1018 data pd O 1000
list{i] = 1000 - i node input READ 10 pt 1019 1029
end for node sort
node print
input (k) flow{
init input
if (k = ‘‘sort’’) input sort BRANCH 0.5
.call sort() input print BRAECH 0.5
else }
call print() }
end main sart{
node fori READ 4 pt 1030 1034
sort() node forj READ 4 pt 1035 1038
for i = 1 to 1000 node min READ 10 pt 1039 1048 data pd ¢ 1000
for j = 1 to 1000 node endj READ 2 pt 1048 1050
find min entry - node xchng  WRITE 12 pt 1061 1062 data pd 0 1000
end for node endi READ 2 pt 1063 1064
exchange list[min] with list[i] flow{
end for fori forj
end sort forj min
min endj
print() endj min LOOP sz_half xchng
for i 3 1 to 1000 xchng forj LOOP sz endi
output(list(i]) }
end for }
end print print{ ... }
a. Original program b. PCFG deflnition of program

Figure 6.2: Example program and corresponding PCFG.

are selected randomly from this range.

6.2.6 Specification Language

A simple program and the language used to specify a PCFG of the program are illustrated in
Figure 6.2. The “memory{}” construct specifies the virtual space required by the text, data and
shared segments. The “bind{}” construct binds constants to identifiers. The structure of the
program is defined with the “node{}” construct. A node can be a simple node containing items
listed in definition 3.1. It can also be a “meta” node consisting of one or more simple and meta
nodes and one “flow{}” construct that defines the control flow within that meta node. In the
figure, node init’s function is Write. Its exec time is 19 x 1000 cycles, its text space is

<1001, 1018 > and it has one data block <0, 1000 >.
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The level of abstraction used will depend on the nature of the experiment and the informa-
tion available about the program. As more information is known, it can be added by converting
simple nodes to meta nodes. In this example, each node represents a set of program statements
3. Some nodes are more “abstract” than others. For instance, node init represents the entire
“for loop” used to initialize the array, whereas the loops in sort () are modeled in more detail.
For this level of abstraction, a node’s text space can be determined based on the number of
instructions it represents. For a RISC processor, where the instructions are of fixed length, the
size can be estimated based on the statement to instruction ratio. The number of cycles per
node is 1 to 1.4 times the number of instructions. Once the PCFG is specified, it is compiled

to create a binary file that is executed by Ez.

6.3 Model Application

One application of the software model is illustrated. It is used to obtain error latency distribu-
tions of two different programs and evaluate two memory scrubbing schemes. The error latency
times obtained are validated with measured latencies from an actual system. The experiments

also validate the detection function introduced in the previous section.

6.3.1 Application Programs

Two programs are represented with the software model. The first is a Gaussian elimination
program with partial pivoting and back substitution. This program was chosen because it is
representative of a large class of numerical and statistical applications. The Gaussian elimina-
tion program (Gauss executes indefinitely. Each iteration takes 35.6 seconds and consists of
filling a 300-by-300 matrix with randomly generated numbers, solving the matrix and printing
the result. The program contains 280 lines of C code and was modeled with a PCFG consisting
of 23 nodes. The second program is an insertion sort (Sort). Unlike Gauss, it manipulates
integers and does not use the floating point co-processor. Sort repeatedly sorts a randomly
generated array of 7000 numbers which requires 30 seconds for each iteration. The program

contains 200 lines of code and is represented with a PCFG with 11 nodes. Both PCFGs are

*Typically, the level of abstraction is much higher than shown here, but this serves well as a simple illustration.
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executed with the EZ;.zt_error paradigm. Several instances of the Gauss PCFG are executed

simultaneously to demonstrate the software model’s ability to execute more than one PCFG.

6.3.2 Experiment Setup

The software model was initialized with P,, = 8MB of memory. One to 16 instances of a PCFG
are executed simultaneously. A procedure that sweeps through P, every hour was added to

simulate the scrubber. Each experiment run consists of the following steps:

1. Start the PCFG(s).

2. Randomly select a PCFG and a word within the PCFG’s virtual memory space to be

injected.
3. Inject an error — flip a bit of the selected word.
4. Execute the PCFG(s) until the error is detected or the observation period has expired.

5. Record the detection time and goto step 2.

The error is assumed to be caused by a transient fault and is repaired by rewritting the corrupted
word. There are two possible outcomes of an injection: 1) a PCFG detects the error, or 2) the
scrubber detects the error. Several terms used throughout this section are now defined.
Definition 5.1: An active error, e,, is an error that is detected by the program (i.e. detected
by the process of program execution) assuming there is no scrubber.

Definition 5.2: The program detection latency is the time from injection to the time the error
is detected by the program.

Definition 5.3: The scrubber detection latency is the time from injection to the time the error

is corrected by the scrubber.

6.3.3 Validation Environment

A Tandem Integrity S2, instrumented with a fault injection and a monitoring device, was used
to verify the detection times obtained from the software model. The original C version of the
application programs were executed while injecting errors into their text space and measuring

the detection times. Figure 6.3 shows the hybrid monitoring environment used to conduct the

.
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experiments. A detailed description of the environment can be found in [75, 76]. -‘The hybrid
environment takes advantage of the Integrity S2’s ability to re-integrate a failed component of
a subsystem on-the-fly. The environment is automated and can execute for days repeatedly
injecting errors and collecting measurements. A Tektronix DAS 9200 digital logic analyzer is
used to monitor the bus activity on the CPU that is injected with errors. A finite state machine
is used to specify the data that is to be collected, such as the times when an injection occurs,

the corrupted location is read or written, an exception is raised, and when POST is initiated.

sockat connection
Tandem SUN SPARCII

Integrty

DAS Control

pogma 5 _of =
applications A ¢ Toktoni DAS program
Analyzer
Finite machine
\ to control data /
RS-232

DAS Probe [ collection

connection

Figure 6.3: An injection environment using hybrid monitoring.

A DAS control program running on a Sun Sparcll workstation accepts start, stop and data
upload commands from the injection program, translates them, and relays them to the DAS.
The injection program runs on the Tandem Integrity S2 machine and injects errors into the
text region (the region containing the machine instructions) of a target application. Injecting
an error consists of randomly selecting a word, and randomly corrupting one bit of the word
residing in the memory of CPUB. If the word resides in the cache, it is deleted to ensure that
the corrupted version of the word is used.

Figure 6.4 shows the program used to inject errors and collect data. Each error injected has

one of three possible outcomes:

1. The error is detected by the MIPS R3000 (e.g. bus error, address error, arithmetic
exception) on CPUB. In this case, CPUB sends an interrupt to the voter. The voter, not

receiving interrupts from the other CPUs, shuts down CPUB.

2. The error is detected by the voter. This can happen in two ways. First, all CPUs access

global memory, perform [/O or are forced to synchronize at the voter. At this point, the

.
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1) Start one or more target application program(s).
2) Start the DAS controller and request it to start the DAS.
3) Randomly select
the target application to inject
the address of the word to be corrupted
the mask to use.
4) Inform the DAS of the address of the word corrupted.
5) Inject the error into the word (flip a sigle bit).
6) Wait a specified time or until CPUB is shutdown.
meanwhile, the DAS records reads,writes,exceptions, POST etc.
7) If CPUB was not shut down
shut down CPUB.
8) Initiate the POST and re-integration process.
this cleans out any effect of the injection.
9) Request the DAS controller to upload the data collected by the DAS.
10) Goto step 3.

Figure 6.4: Program used to inject errors and obtain measurements.

voter detects a discrepancy in the command or the data submited by CPUB. Second. the
injection causes only CPUB to erroneously access global memory or perform [/O. The

voter detects the discrepancy and shuts down CPUB.

3. The error is not detected by either detection scheme and is eventually corrected by the

memory scrubber.

The behavior of the detection process and the measurements obtained should not be construed
to be purely characteristic of the Tandem Integrity S2 because it uses the error detection
mechanism of the MIPS R3000 — a commercially available RISC processor. However. because
of the additional detection circuitry of the Integrity S2, the error detection coverage will be

larger and the error latency times will be smaller.

6.3.4 Program Detection Latency

Experiments are initially conducted with the Gauss PCFG to determine if the high level
abstraction can provide program detection latency times similar to those observed by the real
program executing on the Integrity S2. Three different detection models, obtained by changing
the parameters of the detection function (see Equation 6.1), are used. The specific parameters

and the names of the detection models are listed in Table 6.1. Parameter p, was selected so
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Name Ot v | LIMIT
SIM1 | 0.67 | 1.0 1
SIM2 | 0.425 | 1.0 2
EXP | 0.589 | 1/3 2

Table 6.1: Parameters for the three low level error detection models.

that D (Equation 6.1) is 0.67 4, and it is assumed to be the same for all nodes in the PCFG.
SIM1 detects errors on the first encounter only. SIM2 detects errors on second encounters but
it uses the same value of p; on each encounter because v is one. EXP reduces p; exponentially
with each encounter. There are two components to program detection latency: the access time
and the detection time. The access time is the time from injection to the time the corrupted
location is first accessed by the program. The detection time is the time from the first access
of the corrupted location to the time the error is detected. In the model, the time to traverse
the PCFG until the corrupted location is accessed is the access times. The detection model
is used to capture the detection time and the probability of detection. Since the access times
are orders of magnitude greater than the detection times, errors that are detected immediately
after being accessed are assumed to be detected in zero time. Detection models SIM2 and EXP
are designed to capture the cases where the detection times are large.

One thousand errors are injected into an executing PCFG to obtain program detection
latency times. Figure 6.5 shows the cumulative distribution functions (CDF) of the measured
and simulated program detection latency. The figure also contains the CDFs obtained from
using two distributions that estimate the spatial distribution of the memory accesses [47]. One
is the uniform distribution where all addresses are accessed with equal probability. The other
is a ramp distribution where the probability of accessing an address increases as the order of
the address increases. That is, high-order addresses are more likely to be accessed than low-
order addresses. The graph shows that the uniform and ramp functions, which do not model the
control flow of the program, fail to capture the spatial locality exhibited by the program. In the

measured CDF over half the detection times are less than a second whereas the 50th percentile

4D = 0.67 was determined from measurements, however, later it is shown that D (which is a function of p¢ )
is not the dominant factor in determining latency times.
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Figure 6.5: Cumulative detection latency distribution functions.

for Ramp and Uniform is approximately 18 seconds. The three functions which model the
program'’s control flow captures the program detection latency distribution remarkably well.

Figure 6.6b is a histogram of the measured error latency times for Gauss. The spike
near the origin results because of the structure of the program and because most errors. when
encountered, are detected within milliseconds. Most of the time in Gauss is spent in loops where
a set of instructions are executed repeatedly. Errors injected in the body of a loop containing
the program counter (PC) will normally have small access times. These errors account for more
that 50% of all the errors. Errors injected outside a loop containing the PC will have access
times that are at least as large as the time needed for one iteration of the loop (Figure 6.7).
The actual access time will depend on the number of times the loop will be executed. These
errors account for much of the tail in Figure 6.6b.

A close scrutiny of the measured data shows that many errors are not detected immediately
after they are accessed. Figure 6.8 is a probability distribution function of the detection time
for Gauss. Though a large percent are detected within a few microseconds, a good segment
(10%) have detection times that are greater than 100 milliseconds. Furthermore, Figure 6.9
shows the frequency count of the number of multiple read accesses of the corrupted instructions

-
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Figure 6.6: Histogram of the program detection latency in seconds, for 1 program.
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Figure 6.7: Access time depends on location of the PC and the error.
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Figure 6.8: Histogram of the measured detection times for Gauss.

prior to detection. The cause for this behavior is probably due to data dependencies. For
instance, if the instruction bgt r5, 0x4000 is corrupted and becomes bgt r7, 0x4000. the
error may not be detected if the contents of register r7 is greater than zero. On a later access.
the value of r7 may be less than zero, thus potentially causing an error. The other reason is that
the error propagates and is eventually detected while executing some other instruction. The
software model does not directly model this later phenomenon. However, it models the multiple
read phenomenon with error detection models which detect errors on a second, third or more
access. The time to re-access the corrupted location is determined by traversing the PCFG and
is the detection time. Note that the probability of detection tends to reduce exponentially with
increasing number of read accesses (Figure 6.9). Of the detection models, only EXP mimics this
behavior. SIM1 detects errors only on the first access. SIM2 overestimates the number of errors
detected because it does not reduce the probability of detection with increasing accesses. The
value of v = 0.33 for EXP was obtained experimentally. Repeated trials with various values
were tried and a value of 0.33 was found to produce the most accurate representation of the
measured behavior. Comparison of Figure 6.6a and 6.6b, shows that EXP captures the error
latency distribution very well. It even captures the tail of the latency distribution. Results
of a statistical verification of the detection models are shown in Table 6.2. The table lists the

mean and standard deviation of the error latency distribution and the sum of the square of the
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residuals, R,

R=) (v-w)

where, y; is the ith entry from the measured CDF

7; is the ith entry from the simulated CDF

for all detection models and for the Ramp and Uniform methods. Of all the models, EXP

produces R values that are 3 to 350 times smaller.

Name Mean | Std. R Normalized R
w.r.t. EXP
SIM1 6.9 10.2 | 0.066 3.00
SIM2 11.7 | 17.36 | 0.345 15.68
EXP 9.1 | 12.74 | 0.022 1.0
MEASURED | 8.8 | 12.55 - -
Uniform 3764 | 34.68 | 7.58 344.55
Ramp 37.13 | 39.73 | 5.68 258.18

Table 6.2: Statistics of the measured and simulated program detection latency for the Gaussian
elimination program.

62



1100 250

880 200 Is\/lecaian(:i 16.32}1 ,
. td. v: 24.5
F e 340 b Count: 476
e 660 ount: 1987 e 150
q q
u u
a 440 n 100
C C
Yy y
220 50
1 Dpua sl Jatnclhpndl L
O =~T=r=T"T T 1711 0 ==t =r=r T 1
0 10 20 30 40 50 60 70 80 90100 0 10 20 30 40 50 60 70 80 90100
a) Simulated (EXP) b} Measured

Figure 6.10: Histogram of the program detection latency of two programs (sec.).

The software model was used to execute two PCFGs to obtain their combined detection
latency times. Figure 6.10 contains the measured and simulated latency times of two copies
of the Gaussian elimination program executing simultaneously. The two means are similar
and demonstrates that the model can predict the change in latency times due to the increased

contention at the CPU.

6.3.4.1 Applicability of the Model

The previous subsection demonstrates that the software model can be used to determine the
program detection latency time for the Gaussian elimination program. The question is can this
same model be applied to different programs? One issue is the parameter p;. It varies with the
system and is very dependent on the structure of the program. For example, programs with
many branches that are seldom traversed will tend to have a smaller value for p;. Though the
PCFG of a program can be used to estimate py, it is useful to determine the sensitivity of the
results of the model with respect to p;. If the model is highly sensitive to the estimated p, it
will not be generally useful. Another issue is the detection model. It is not clear that the same
detection model will hold for all program types.

To determine the sensitivity of the results to p;, the Gaussian elimination PCFG was ex-
ecuted with various values of p;. Table 6.3 contains the mean and standard deviation of the

program’s detection latency and the R-values for varying values of p;. The EXP detection
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pt | Mean | Std. Dev. R

0.2 | 1242 21.7 0.071
0.4} 11.40 19.6 0.047
0.6 | 10.02 16.79 0.021
0.8 8.83 14.14 0.014
1.0} 7.41 10.4 0.018

Table 6.3: Sensitivity of the mean detection latency time to varying values of p, (LIMIT = 5).

Name | p; v | LIMIT
SIM1 | 0.60 | 1.0 1
SIM2 | 0.26 | 1.0 3
EXP [ 042 |1/3 3

Table 6.4: Parameters for the low level error detection models.

model with LIMIT set to 5 was used. Very large values for LIMIT tend to skew the mean and
produce the worst case results. The table shows that the relationship between p; and the mean
latency is linear. The R-value also displays an inverse linear relationship and indicates that
the distribution generated by the model fits the measured distribution well. For all values of p;
except 0.2, the R-value is less than that produced with SIM1 and SIM2 (Table 6.2).

To determine whether the detection model developed for Gauss can be applied to other
programs, it is used to model an insertion sort program. The sort program was selected because
it operates on integers, does not use the floating point co-processor, and hence is quite different
from Gauss. An arbitrary value of D = 0.6 is used for all the nodes in the sort’s PCFG.
For comparison purposes, detection models SIM1 and SIM2 are also used. The parameters
for all three detection models are listed in Table 6.4. Table 6.5 lists the mean and standard
deviation of the error latency distribution and the R values for each detection model, and
Figure 6.11 contains the measured and simulated cumulative distribution functions. Again,
EXP produced relatively more accurate results both with respect to the mean and the overall
latency distribution. But more importantly, the Table and the Figure indicate that the model
can be generally applied to other programs. Figure 6.12, which shows the measured frequency
of multiple reads before detection, explains why EXP works well with sort. Sort displays a

behavior similar to that seen with Gauss. Based on only two programs, one cannot state as
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Name Mean { Std. R Normalized R
w.r.t. EXP
SIM1 9.6 11.72 | 0.073 1.20
SIM2 11.1 | 17.12 ] 0.128 2.13
EXP 10.42 | 14.05 | 0.061 1.0
MEASURED | 10.67 | 11.93 - -

Table 6.5: Statistics of the measured and simulated program detection latency for Sort.
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Figure 6.11: Measured and simulated cumulative detection latency distribution functions.

fact that all programs will display such behavior thus making the EXP detection model widely
applicable. However, given that the two programs are very different in structure and in the
types of data they process, one can conjecture that for RISC machines, similar behavior will be
seen across a large number of programs. We say this because with RISC’s limited instruction
set, the instruction mix for different programs are remarkably similar. In [76], the author lists
the frequency of occurrence of each instruction of the Gaussian elimination program and a

program that finds anagrams in a large string of characters. The instruction mix for these very

different programs are quite similar.

The next subsection will use the Gaussian elimination PCFG to analyze two scrubbing

mechanisms.
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Figure 6.12: Frequency of multiple accesses of corrupted location (Measured).

6.3.5 Coverage of the Memory Scrubber

This section defines and computes the active coverage of the scrubber. The scrubber coverage,
SC, is:
SC = Preq)Pr[Si < P] + (1 — Prie,))

The scrubber’s active coverage is Pr[S; < P, and is the probability that the scrubber will
detect an active error before the program. S; is a random variable denoting the detection
latency of the scrubber. P, is a random variable denoting the detection latency of the program.

Emphasis is placed on the active coverage because active errors not caught by the scrubber
cause a processor board to be shutdown followed by a lengthy POST and re-integration period.
This time is a “window of vulnerability” within which a second error (whether active or not)
will cause the entire system to fail. Increasing the active coverage of the scrubber will reduce
the probability of processor board failures and increase the reliability and availability of the
system.

The latency distribution of the scrubber, f5 (s), can be shown to be uniformly distributed,
fs,(s) =1/T,0< s <T,whereT is the time required to complete one sweep through the mem-

ory. If fp(p) is the distribution of the program’s detection latency, then the joint distribution
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No. Programs Pr(S; < B
Simulation | E{P]/T
1 0.0025 0.00246
2 0.005 0.0048
4 0.009 0.0087
8 0.016 0.0165
16 0.032 0.0325

Table 6.68: The active coverage of the scrubber.

of the two detection latencies is fsp(s,p) = fp(p)/T, by stochastic independence and:
T P oo T
Prisi<Bl = [ [0 fsps,p)dsdp+ [~ [ fsp(ap) dsdp
p=0 Js=0 p=T Js=0
T
= 1T 01D'fxl>.(p) dp + (1 - Fp(T)) (6.2)
=
For T much larger than the mean program detection latency time, the approximate active

coverage is:

Pr(S; < P] = E[R}/T (6.3)

One hundred thousand errors were injected to determine the active coverage of the scrubber
for T = 3600 seconds. Table 6.6 contains the results obtained with simulation and with Equation
6.3. Equation 6.3 provides accurate active coverage values for large T Hypothesis testing was
used to show that the means in column 2 and 3 are statistically identical. By the Central
Limit Theorem, a normal distribution was assumed. Table 6.6 shows that the active coverage
is extremely small. It improves with increasing number of programs because the combined
program detection latency times increase.

The coverage of the scrubber can be improved by using two scrubbers: one to scrub only
unused memory while another scrubs the allocated pages in memory. This heuristic can be
implemented easily because the memory system keeps track of allocated and unallocated pages.

The overhead of the original scrubbing scheme is:
OVHD,4=Nk/T

where, N is the number of 32-byte blocks in the memory and k is the overhead for scrubbing

one block. The overhead per hour, for T = 3600 seconds is approximately 1.5 seconds. The
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Active Coverage of New Scrubber
OVHDpe/OVHD,y | 1 Prog. | 4 Prog. | 16 Prog.
1 0.33 0.32 0.31
2 041 0.40 0.38
4 0.45 0.43 0.41
8 0.51 0.45 0.44
16 0.61 0.49 0.46

Table 6.7: Active coverage of the new scrubber.

overhead of the new scrubbing scheme is:
OVHDqpew = k(Ny/Ty + NoJTo) (6.4)

where, N, is the number of unallocated 32-byte blocks, ¥V, is the number of allocated blocks,
and ¥V = N, + N,. T, and T, are the scrubber sweep times for the unallocated and allocated
pages, respectively. Table 6.7 contains the active coverage of the new scrubber for various
overheads, with T, = 4T. T, is determined from Equation 6.4 for a speciﬁed overhead. The
executable image of one Gaussian elimination program is 32KB (N, = 1K blocks). The new
scrubber improves the active coverage by one or two orders of magnitude without increasing
the overhead. However, since T, is four times slower than T, the impact of the two scrubbers
on system dependability should be evaluated before one is selected.

Since the dominant factor of the new scrubber is T,, Equation 6.2 can provide an approx-
imate active coverage if fp(p) is known. A statistical package was used to fit the measured
program detection latency shown in Figure 6.6b with a 2-phase hyperexponential distribution,
HYPER(a;, A1, a2, Az). The fitted curve is HYPER(0.5, 0.045, 0.5, 5.435) with an r? value of
0.99. Using the 2-phase hyperexponential and substituting T, for T in equation 6.2, the active
coverage is:

1 e~MTa 1 e—T
PriS< Pl = (g = =gy )+ ool )

Table 6.8 contains the T, values and the coverage estimated with the above equation. The

(6.5)

results match those shown in columnn 2 of Table 6.7 well and verify Equation 6.5.
To show the impact of using simple estimations of application behavior, we compute the
active coverage using the ramp function. We also compute the active coverage assuming fp,(p)

is exponentially distributed with a mean of 8.8 seconds (the measured mean for 1 program).
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OVHD,eo | || Ta (sec.) | Estimated Active
OV HD,yyq Coverage
1 19.62 0.34
2 8.41 0.43
4 3.93 0.48
8 1.90 0.53
16 0.935 0.59

Table 6.8: The estimated active coverage of the new scrubber for one program using a fitted

fPl(p)'

Active Coverage of New Scrubber for 1 Program

OVHDqew / Ramp Exponential
OVHD,q Cvrg. | % Error || Cvrg. | % Error

1 0.70 112.1 0.41 24.2

2 0.85 107.3 0.65 58.5

4 0.93 106.6 0.81 80.0

8 0.97 90.2 0.90 76.5

16 0.99 62.3 0.95 55.7

Table 6.9: Active coverage of the new scrubber using ramp and an exponential detection
latency distribution.

Table 6.9 contains the coverages obtained. The error column compares the difference in coverage
with those obtained using the software model (column 2 of table 6.7). The error is due to an
overestimation of the number of large detection latency times. Figure 6.5 shows that over
half of the measured detection times are less than a second, whereas the 50th percentile for
ramp is approximately 18 seconds. The coverages are very misleading. Furthermore, they
can produce extremely optimistic dependability figures causing the designers to falsely assume
that dependability specifications are being met. These results emphasize the importance of

application dependent evaluation - especially when studying application specific systems.

6.4 Summary

In this chapter, we introduced a software model that provides a framework to evaluate the
behavior and effect of software on hardware faults. The model represents application programs

by decomposing them into graph models consisting of a set of nodes, a set of edges that prob-
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abilistically determine the flow from node to node, and a mapping of the nodes to memory.
The software model simulates the execution of the programs while errors are injected into their
memory space. The result provides application dependent parameters such as detection and
propagation times. The model is especially useful in the early design stages because it allows
designers to make application dependent evaluation of function and system level error detection
and recovery schemes. One use of the model was illustrated with a case study. The model was
used to obtain error detection latency times of the Gauss and sort programs running on a
Tandem Integrity S2 system and evaluate the coverage of two memory scrubbing schemes. The
applicability of the model for different programs was evaluated by studying its sensitivity to the
detection parameter p;. The EXP detection model was shown to be applicable to both Gauss
and Sort which use different instruction sets. We feel that this model is generally applicable
to most compute bound programs running on RISC processors. Error detection latency times
obtained with the model were validated with measurements from an actual Integrity S2 system.
Formulae which were derived to estimate application dependent active coverage values of the
scrubbing schemes were verified with the software model. The application dependent coverage
values obtained with the model were compared with those obtained via traditional schemes
that assume uniform or ramp memory access patterns. For our program, some coverage values
obtained using the traditional approach were found to be 100% larger than those obtained with
the software model. This result emphasizes the need for application dependent evaluation -

especially when evaluating the dependability of application specific systems.
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Chapter 7

Simulation Acceleration

The previous chapter evaluates the impact of application software running on a single processor.
The question is how can the study be extended to perform application specific dependability
analysis of the entire system? A naive approach that models the execution of each PCFG over
a simulated period of several years would require astronomically large execution times. Clearly,
acceleration techniques are necessary to speedup the simulation. This is especially the case for
functional simulation tools such as DEPEND because one of its advantages is the ability to
simulate system functionality with detailed algorithms. How you evaluate detailed simulations
of systems for extended periods of time is the focus of this chapter.

This chapter presents acceleration techniques used to reduce simulation execution time while
still allowing detailed analysis of a system. A combination of hierarchical, time acceleration,
and hybrid simulation is used. The overall approach is discussed and then illustrated in stages.
The results of each stage are then validated, either with measurements from the Integrity 52 or
with simulations that do not use the acceleration technique. The automated environment that

allows the user to employ this acceleration facility is described in Appendix A.

7.1 Acceleration Approach

The acceleration technique uses a combination of three schemes to provide simulation speedup.
It uses hierarchical simulation, a time acceleration algorithm, and hybrid simulation. Because
the terms hierarchical simulation and hybrid simulation have been widely used to mean different

things, we now define how the terms are used in this thesis. By hierarchical simmulation, we mean

-

71



that the same simulation approach is used to model a system at different levels of abstraction.
Results from a detailed model are used by a more abstract model thus tieing the two together.
With hybrid simulation the level of abstraction remains the same but a combination of two or
more techniques are used to solve the simulation model. In DEPEND, a functional simuiation is
either combined with a Monte Carlo simulation [40, 28] or with a Markov or Semi-Markov model
[70]. Existing Markov analysis tools are used to solve the Markov model. While many define
Monte Carlo simulation to be any kind of simulation that uses random numbers, we differentiate
between functional simulation and Monte Carlo simulation. In the latter approach, the passage
of time does not play a substantive role [40].

The general framework of the acceleration technique is illustrated in Figure 7.1. Portions
of the system are first analyzed with detailed functional simulation models. Key characteristics
of the models are extracted and stored as statistical models. A statistical model can be a point
statistic such as a mean or a median, an entire distribution such as the program detection
latency distribution, or it can be a table. A fault dictionary is an example of a table. A
fault dictionary may consist of a list of possible gate-level faults and for each fault contain all
possible failure modes and their probabilities. The statistical models are used by more abstract
functional simulation models to represent the behavior of the detailed model. As Figure 7.1
shows, the hierarchical approach can be used repeatedly to ascend to higher levels of abstraction.
Simulation speedup is achieved because the events in the detailed model are not simulated but
are replaced with its statistical model. This allows the abstract model to simulate more of the
system while maintaining reasonable execution times.

The time acceleration technique is intimately entwined with the hierarchical simulation
approach. It is based on the notion that a statistical model provides information about a future
event. For instance, if the statistical model is a program detection latency distribution, then
the time at which an error will be detected, t + z, can be determined by sampling from the
distribution at time, ¢, when the error is injected. Using this information, the time acceleration
technique can leap to a point just before time t+z and begin to simulate the detailed behavior of
a system. Once the error is detected and its effect has subsided, the time acceleration mechanism
can leap forward to the next error detection (Figure 7.2). This approach can significantly
speedup simulation time, especially if the events representing the detailed behavior occur in

nanoseconds while error latency times are in seconds.
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Figure 7.1: The framework of the acceleration technique.

The foundation of the hybrid simulation approach is based on the notion of variable aggrega-
tion and decomposability {13]. With this technique, a large complex model is broken down into
simpler submodels. The submodels are analyzed individually and their results are combined to
derive the solution of the entire system. So long as the interactions among the subsystems are
weak, this approach provides valid results. Figure 7.3 illustrates how this approach is readily
adapted for dependability evaluation. A model of a system is broken down into two submodels:
the failure occurrence submodel and the repair submodel. Each submodel is modeled with a
functional simulation — which can itself use hierarchical simulation and time acceleration. The
submodel is executed to extract statistical models (e.g. a failure distribution) that represent
its behavior. The statistical models are then used to drive a Continuous Time Markov Chain
(CTMC) or a simple Monte Carlo simulation of the failure and repair process of the entire

system. The approach is not limited to any number or type of submodels. As Figure 7.1 shows,
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all three approaches can be combined to cater to the specific needs of the user. The automation
of the acceleration technique is discussed in Appendix A.

There has been extensive investigation into importance sampling to reduce simulation time
[41, 50, 62, 72]. Importance sampling is a statistical approach that increases the probability of
failure occurrences to reduce the time required for the simulation to converge. The results pro-
duced by the simulation are then “unskewed” by multiplying by a factor that takes into account
the increased failure probability. These heuristics are easiest to apply to Monte Carlo simu-
lations as opposed to functional simulations, and their estimation of stationary measures (e.g.
MTTF and availability) are mostly restricted to regenerative models. Hybrid techniques have
been used in the past. Schwetman [59] applies this technique to analyze a multiprogramming
computing center. A simulation models the arrival and activation of jobs and calculates the
percentage of time spent at each multiprogramming level. A central-server queueing network is
used to model the processing subsystem for each of the mulitprogramming levels. The hybrid
model is 18 to 200 times faster than a pure simulation model because it does not simulate the
system processor in which events occur in the order of milliseconds. In other words, speed
up is achieved by replacing the time consuming 'segment of the model with an approximate
analytical model. The most prominent example of the use of hybrid techniques in reliability
analysis is the HARP tool [4]. HARP decomposes a model into a fault occurrence/repair model
(FORM) and one or more fault/error-handling models (FEHM). The FEHMs are simulated

with an extended stochastic Petri Net (ESPN) to obtain instantaneous coverage probabilities.

.
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Figure 7.3: Hybrid simulation for dependability evaluation.

These probabilities are then automatically incorporated into the FORM model, represented by
a CTMC, and solved to obtain system reliability measures.

Our acceleration technique differs from the others in that it does not rely solely on analytical
models to achieve speedup. Schwetman replaces the time consuming portion of the simulation
with an analytical approximation. HARP imposes a Markov or semi-Markov fault occurrence
process which can only use instantaneous coverage probabilities. These techniques are not
widely applicable. OQur acceleration technique is more widely applicable and concurs with
the design philosophy of DEPEND. The acceleration approach can be used with functional
simulation. It is not limited to statistical models consisting of single point statistics but is
designed to collect distributions and tables. Later in the chapter, we show that this can be
crucial to the results obtained. Since the approach breaks down an entire functional simulation
model into smaller submodels, importance sampling techniques that may be impossible to apply
to the entire model may be readily applied to the submodels. Finally, this is the first automated,
general-purpose acceleration technique provided with a simulation tool.

In the rest of the chapter, the details of the acceleration approach is illustrated in stages.

The results at each stage are verified with measurements.

75



7.2 Stage 1: Hierarchical Simulation and Time Acceleration

To perform application specific analysis of the Tandem Integrity S2 system, the software simu-
lation model described in chapter 6 and the hardware simulation model described in chapter 5
are combined using hierarchical simulation and time acceleration. The software model is used
to provide the application specific error latency distribution. The hardware model provides an
error occurrence model that takes advantage of the empirical distribution to speedup simula-
tion. Together, the approach is used to study the effectiveness of the scrubbing scheme and the
availability and MTBF of the Tandem Integrity S2 system running a specific application.

The complete error occurrence process modeled by the hardware simulation, for just two
CPUs, is illustrated in Figure 7.4. A similar process is used to inject errors into the global
memory. As shown in the figure, the error arrival times are exponentially distributed with a
mean of A hours. The error occurrence process can model correlated errors that affect more
than one component, active errors that are detected within 2047 cycles and latent errors that
remain undetected in the system for periods exceeding 2047 cycles. For each error injected,
probabilistic branches are used to determine whether it is a correlated (affecting more than 1
component) or a single error, and whether it is active or latent. The probabilities are specified at
run time. The hardware simulation model uses the approach described in chapter 4 to represent
latent errors. It uses a chronologically sorted queue to maintain the latent errors injected into
the system. Among the information associated with each latent error include the time at which
the error is injected, its location (the component and memory address), and its latency period.
Typically, the errors are detected when their latency period expires. However, the errors can also
be corrected by the scrubber or detected during a repair. Different scrubbing algorithms, the
location in which the errors are injected, and component failure frequency changes the activation
times of a latent error. Storing the latent errors in a queue allows dynamic determination of
whether a latent error is detected or corrected and the time of detection or correction.

The latency period of each error is determined from an empirical program detection la-
tency distribution. This distribution is obtained from the software model. The steps in the

hierarchical simulation approach are as follows:

¢ Execute software model with one or more PCFGs.
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Figure 7.4: The error occurrence process for 2 CPUs.

e Store the program detection latency distribution. This is the statistical model that repre-
sents the error detection process of the programs.
¢ Execute the hardware simulation model with the error occurrence process described above.
Sample from the empirical program detection latency distribution to determine the latency
period of each error.
Speedup is achieved because the time consuming low level simulation of the detection process of

each error is replaced with a distribution. Further speedup is achieved using time acceleration.

Time acceleration takes advantage of the fact that the detection time of each latent error is

known apriori. The time acceleration algorithm works as follows:

-
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1. Poll the processors and global memory to determine time of earliest event among them.

There are three possible events:

¢ An error’s latency period expires.
¢ Scrubber corrects an error.

o Re-integration begins.
2. Leap forward in time to earliest event.

3. Simulate system activity at nanosecond granularity until event occurs.

4. Goto 1.

The DEPEND objects used to simulate the processor and global memory contain methods that

provide the time and type of the earliest event to facilitate the time acceleration algorithm.

7.2.1 Validation of the First Stage

To validate the combined functional simulation model developed using hierarchical simulation
and time acceleration, the results from the simulation are compared with those from a fault
injection experiment on the Integrity S2. The hybrid monitoring environment described in
chapter 6 is used to conduct the fault injection experiments. Two Gauss programs are used as
the target applications. Figure 7.5 shows the injection program that was executed to obtain the
measured mean time between failures (MTBF) for the Integrity S2. The injection experiment
was conducted for 28 hours during which 414 errors were injected. The mean time between
failure (MTBF) and the number of undetected, latent errors present in CPUB just prior to
shutdown ! was collected. The experiment was then repeated with the functional simulation
model just described. The simulation injection scenario is identical to that outlined in Figure
7.5. As in the hybrid monitoring system, the simulation model injected errors only into CPUB.
The model was executed for a simulated time period of 500,000 seconds (5.78 days) with an
exponential error arrival rate with a mean of 3 minutes. Figure 7.6 shows the measured and
simulated CPU shutdown distributions and their means, medians, standard deviations and

the sample counts. The means, medians and the standard deviations are statistically identical.

!This is simply a count of the number of errors injected prior to a CPU shutdown. So if four errors are
injected before a shutdown, it is assumed that there are three undetected errors in the CPU prior to a shutdown.

-
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1) Start the two Gaussian elimination workload programs.
2) Start the DAS controller and request it to start the DAS.
3) Randomly select
the program to inject
the address of the word to be corrupted
the mask to use.
4) Inform the DAS of the address of the word corrupted.
5) Inject the error into the word (flip a single bit).
6) Determine time of next error, t (ezp(A = 3minutes)).
7) Wait for CPU shutdown or until ¢ — whichever comes first.
8) If (CPU is shutdown before ¢ elapses) '
re-integrate the CPU
sleep until ¢t elapses
9) Goto step 3.

Figure 7.5: Injection program used to measure the MTBF.

Comparing the distributions, the general shape of both distributions is similar in spite of the fact
that the measured distribution has 5 times fewer samples. A closer look at the two distributions
reveal that many of the peaks in the measured distribution can also be found in the distribution
obtained from simulation. For example, the simulated distribution captures the peaks which
occur between 640 and 960 seconds and between 960 and 1280 seconds. Figure 7.7 contains the
measured and simulated distributions of the number of undetected, latent errors in the CPU at
the time of a shutdown. The distribution obtained from the simulation model tracks the one
obtained from measurement very well. We feel this close correspondence between the measured
and simulated results validates the high fidelity of the simulation model using hierarchical and

time acceleration techniques.

7.3 Stage 2: Hybrid Simulation

This section describes the hybrid approach that combines analytical and simulation techniques
to reduce the execution time of the functional simulation model described in the previous
section. In spite of the use of hierarchical simulation and time acceleration, the simulation
execution time can be in the order of days. Certain parameter settings (e.g. frequent scrub-
hing coupled with large detection latency times) erases most errors injected thus requiring the

simulation of a very large number of errors for each system failure. To make matters worse, the

-
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Figure 7.6: The Time to CPU shutdown distribution (in seconds).

system must be run for extended periods of time to collect enough system failure events to ob-
tain statistically valid results. If the MTBF of a system is 10 years, it may need to be simulated
for 300 to 500 years to obtain valid results. Features of the model such as the deterministic
scrubbing scheme, modeling the location of each error and the inter-dependence between the
system components (see chapter 4), and the non-exponential error latency distributions make
this model very difficult, if not impossible, to model accurately with analytical methods. Impor-
tance sampling techniques cannot be used because they cannot accurately calculate the steady
state MTBF (Mean Time Between Failures) for non-regenerative processes [50].

The hybrid approach breaks up the simulation model into the failure occurrence and repair
submodels. To simplify the example, we will forego developing the repair submodel by assuming
that repair coverage is 100% and repair times have an exponential distribution. The failure
submodel is the error occurrence portion of the functional simulation model described in the
previous section (see Figure 7.4). The functional simulation model is executed for a short time
to collect component inter-failure times — the time period between successive failures. This is
feasible because the component failure rate is significantly faster than the system failure rate,
and so a large number of samples can be collected in a short period of time. The measured
failure distributions and the repair distributions are then used with CTMC and Monte Carlo
simulations which model the failure/repair process of the entire system. The detailed steps of

the approach are illustrated in Figure 7.8.
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Figure 7.7: Distribution of the number of latent errors prior to a CPU shutdown.

7.3.1 Markov modeling

In order to use a CTMC, the measured failure distributions are first fitted with an exponential
polynomial. A statistical analysis package, SAS [57], is used for curve fitting. The chi-square
and Kolmogorov-Smirnov tests [70] are used to verify the goodness of the fit at the 0.01 signif-
icance level. The CTMC models used for the failure/repair process will depend on the fitted
polynomials. If they are simple exponentials, the result is the CTMC model shown in Figure
7.9.

In the model, 0c0g is the initial state where zero processors and zero global memory boards
have failed. In state Iclg, 1 processor and 1 global memory board has failed etc. State Fis
the absorbing system failure state. The rates A, and ), are the empirical failure rates for the
processors and the global memory, respectively. Exponential repair times with means (1/pu,
and 1/p.) equal to the constant repair times of the system are used in the model. This CTMC
can be solved with any existing analytical tool to obtain the system MTBF. The models in this

paper are solved using SHARPE [54].

7.3.2 Monte Carlo simulation

With Monte Carlo simulation [28], the empirical failure distributions can be used directly

without any fitting. Monte Carlo simulation is useful when the empirical distributions cannot
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Figure 7.8: The hybrid approach.

be fitted to an analytical distribution, when the state space of the CTMC model is too large
to be solved with current numerical methods and when the distributions are not exponential.
Monte Carlo simulation was used to simulate the Markov model in Figure 7.9. The failure
times of the components are sampled from the empirical failure distributions using an inverse-
transform method [40]. The constant repair times used in the functional simulation are used
with the Monte Carlo simulation also. To further reduce the execution times of the Monte Carlo
simulations, a variance reduction technique called antithetic variates was employed [28, 40].
The success of the hybrid approach for this application depends on, 1) the degree of in-
teraction between the failure process and the repair process, and 2) on whether the failure
distributions adequately represent the failure process. The repair process has minimal im-
pact on the failure process. Therefore, the primary issue is whether the distributions collected

adequately represent the actual failure process.
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Figure 7.9: Markov model of system with exponential failure & repair distributions.

7.3.3 Validation of the Hybrid Approach

Three experiments are conducted using the hybrid approaches to verify their efficiency and
validate their accuracy. The results obtained using the hybrid techniques are compared with
results obtained from executing the functional simulation model described in the previous sec-
tion. Parameters are chosen so that the execution times of the functional simulation times are
reasonable. To further speedup the functional simulation model, the empirical latency distribu-
tion is replaced with a normal distribution. This was done because sampling from an empirical
distribution is relatively expensive requiring a binary search of the entire distribution file for
each sample produced.

In the first experiment, a normally distributed error latency with a mean of 44 minutes
and a standard deviation of 29 minutes (N (44,29)min.) was used. Two percent of the errors
injected were correlated, and memory scrubbing was not activated. The second experiment uses
the same parameters, except hourly scrubbing is activated. The third experiment evaluates the
functional model with two different latency distributions. The first is N(44,29) minutes and the
second is N(36,18) hours. Correlated errors are not injected and scrubbing is turned off. All
three experiments assume two minutes are required for global memory reintegration, 2 seconds
for CPU reintegration and 70 seconds for POST.

The functional simulation program was retrofitted to extract the inter-failure times of the

processors and the global memories. Figure 7.10 shows how CPU inter-failure times are col-
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Figure 7.10: Inter-failure times extracted from an execution of the functional simulation.

lected. Inter-failure times for the global memory are collected in an identical fashion. Note that
the failure distributions are collected without distinguishing between the specific components.
This approach was used for two reasons. First, it captures the occurrence of near-coincident
failures between components. Second, it significantly reduces the state space of the Markov
model in Figure 7.14 because there is no need to distinguish between the individual CPUs and
memory units.

For the first experiment, the functional simulation was executed once for a simulated pe-
riod of 300 years. The program took 40 minutes to complete on a Sun Sparcl workstation.
Fifty thousand global memory, and 42891 processor inter-failure times were collected using the
method illustrated in figure 7.10. Histograms with a range from 0 to 18000 minutes (0 to 12.5
days) were used to group the samples. For the processors, 369 out of 42891 points (0.86%)
fell outside this range and were discarded as outliers. For the global memory, 24 out of 50000
(0.06%) were outliers. These points were discarded to simplify the histogramming and curve
fitting process. Removing these points should have little or no bearing on the system MTBF,
because the impact of a few, large inter-failure times is negligible.

For the second experiment, the event-driven simulation was executed for 700 years and
took approximately 100 minutes to complete. Approximately twenty thousand (20606) global
memory and 17,585 CPU inter-error arrival times were collected. The sample data was grouped

using histograms with a range from 0 to 575 hours (0 to 24.3 days). Between one and two percent
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Figure 7.11: Failure density functions for experiment 1.

of the sample points fell outside the 575 hour range. For the third experiment one simulation
run was executed for a period of 300 years for each error latency distribution.

The empirical failure density functions f(z) for the processors and memory, for the first
experiment, are shown in Figure 7.11. The spikes near the Y-axis are caused by near-coincident
errors. The failure density functions for the second experiment are almost identical and are not
shown. The only difference is that the spike near the Y-axis is not as pronounced. Hence, in
spite of frequent, hourly scrubbing, latent, correlated errors substantially reduce inter-failure
times thereby increasing the number of system failures. The empirical failure probability density
functions f(z) for the two latency distributions used in the third experiment are shown in Figure
7.12. The functions with the larger latency are particularly interesting. The unique shapes arise
because a larger number of the latent errors are corrected when the system crashes or the board
in which they reside is re-integrated. Note that the spike characteristic of correlated errors is
not visible.

A two-phase hyperexponential distribution HYPER (o, Ay, a3, A2) [70] was found to fit the
measured failure distributions collected from the first two experiments. The probability density

function for a two-phase hyperexponential random variable, denoted by

f(z) = 01/\18—/\1c + 02/\26-)‘2t (7.1)
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Figure 7.12: Failure density functions for the two error latencies (Experiment 3).
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Number of HYPO(Aq, ..., Ar)
Phases CPU Memory
2 0.000128, 0.00273 0.00299, 0.00301
3 0.000735, 0.000129 | 0.0005367, 0.000535
0.0006695 0.000611
4 0.000998, 0.0001181 | 0.000481, 0.000539
0.001010, 0.001546 | 0.001326, 0.001342

Table 7.1: Empirical pdfs fitted with hypoexponential pdfs.

For the first experiment, the fitted hyperexponential failure distributions of the global memories
and the processors are HYPER(0.987, 0.00043, 0.013, 0.023) and HYPER(0.972, 0.000268, 0.028,
0.027), respectively. The fit was tested using both the Chi-square test and the Kolmogorov-
Smirnov test at the 0.01 significance level. Graphs of the fitted curves are also shown in Figure
7.11. They are not visible, because they are almost perfectly superimposed on top of the
measured curves. The fitted failure distributions for the second experiment are HYPER(0.9936,
0.00013, 0.0064, 0.09) and HYPER(0.9849, 0.00017, 0.0151, 0.095), for the global memories and
the processors. These also passed the Chi-square and the Kolmogorov-Smirnov test at the 0.01
significance level.

In the third experiment, both a 2-stage hypoexponential and a simple exponential distri-
bution was used for the case with the small error latency distribution. Both resulted in good
fits according to the Kolmogorov-Smirnov test and so the simpler exponential distribution is
used to represent the failure distribution. The specific fitted distributions are EXP(0.000260)
and EXP(0.000414) for the CPU and the global memory failure distributions, respectively. The
failure distributions for the case with the large error latencies could not be fitted with the expo-
nential distribution. The nature of the Markov model for hypoexponential failure distributions.
required that the single processor and global memory failure distributions be collected. The
functional simulation model was re-executed to collect the failure distributions of a single pro-
cessor and a single global memory board. To collect enough sample points, the simulation was
executed for 1200 years. The resulting failure distributions were fitted with 2-. 3- and 4-phase

hypoexponential distributions {70]. The pdf for an r-phase hypoexponential random variable,
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denoted by HYPO(A1, Az, ..., Ap) is:

flz) =3 aidie™® (7.2)
i=1
where
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The specific fitted hypoexponential distributions for the single memory and the single processor

(7.3)
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Figure 7.13: Empirical and fitted failure pdfs for a single processor & memory.

produced a good fit, according to the Kolmogorov-Smirnov test. The empirical failure distri-
butions and the fitted distributions are shown in figure 7.13.
Once the empirical failure distributions have been collected and fitted they are used with

Monte Carlo and Markov models to analyze the entire system.

7.3.3.1 Results from Experiments 1 and 2

The hyperexponential failure distributions for experiments 1 and 2 make the failure process
semi-Markov. Using a conversion technique [70}, it can be converted to the Markov model
shown in Figure 7.14. The Monte Carlo simulation, however, can still simulate the model in
Figure 7.9 using hyperexponential sojourn times.

Table 7.2 shows the times taken and the results produced by the original functional simula-
tion and the hybrid approaches. For experiment 1, the functional simulation program, simulated

a period of 80 years for each run. For experiment 2, it simulated 120 years in each run. All

.
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Figure 7.14: CTMC that models the system with hyperexponential failure distributions.

the results produced by the hybrid models fall within the 99% confidence interval of the results
produced with the original functional simulation. The largest deviation between the hybrid
models and the functional simulation model is 6.04%. The data in Table 7.2 demonstrates a
substantial reduction in execution time in favor of the hybrid models. Even taking into account
the time required to generate the empirical distribution, ther is more than a 36 time speedup
for experiment 2. The actual speedup will vary depending on the parameters of the model and

the can be much larger.
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Exp. Type 99% Conf. Int. Time No.
MTBF yrs. Runs

Sim. 1.9 | 2.03| 2.18 | 6.75 hrs. 30

1 Hybd. Mkv - 2.12 - 8 sec. -
Hybd. MC || 2.09 | 2.11 | 2.13 50 sec. 500

Sim. 4.39 | 4.8 | 5.33 36 hrs. 30

2 Hybd. Mkv - 4.51 - 8 sec. -
Hybd. MC | 4.957 | 4.96 | 4.975 | 6.95 min. | 2000

Table 7.2: System MTBF obtained with the pure simulation and hybrid approaches.

7.3.3.2 Results from Experiment 3

For the case with the small error latency distribution (N(44,29) minutes), the Markov model
shown in Figure 7.9 is used to determine the system reliability. The results obtained with the

hybrid techniques and the functional simulation are compared in Table 7.3.

Method Error Failure Distribution | 99% Confidence Interval
Latency Type (MTBF in years)
Simulation | N(44 min., 29 min.) - 7.48 | 8.28 9.27
N(36 hrs., 18 hrs.) - 14.38 | 15.68 17.24
Markov | N(44 min., 29 min.) Exponential - 8.75 -
N(36 hrs., 18 hrs.) 2-phase HYPO - 13.93 -

Table 7.3: System MTBF for the two error latencies (Experiment 3).

The general stochastic petri net (GSPN) description of the system that models a 2-phase
hypoexponential failure distribution is shown in Figure 7.15. Since by definition a 2-phase
hypoexponential distribution is the sum of 2 independent exponential distributions, the hypo-
exponential failure distribution is modeled by adding an extra failing state between the OK
and failed states. The GSPN description can be easily extended to model 3- and 4-phase hy-
poexponential failure distributions by increasing the number of failing states to represent the
additional phases. A Markov model equivalent to the GSPN model in Figure 7.15 has 54 states
if the failure states are not coalesced. For the TMR system with 3-phase hypoexponential fail-
ure distributions, the equivalent Markov model contains nearly 200 states and for the system
with 4-phase hypoexponential distributions, the Markov model contains over 500 states. The

Sharpe tool was used to solve all three GSPN models. However, due to the rapid growth in the
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Figure 7.15: GSPN description with 2-phase HYPO failure distribution.

number of states of the equivalent Markov models, Sharpe was unable to solve the models for
the 3- and 4-phase hypoexponential failure distributions. The result obtained with the 2-phase
hypoexponential failure distributions is shown in Table 7.3. The result does not fall within the
99% confidence interval because the fitted 2-phase hypoexponential distributions fail to capture
the spike and they exaggerate the probability of having small inter-failure times.

The Monte Carlo program simulates the Markov model in Figure 7.9. Because individnal
processor and memory failure distributions are not needed, the empirical distributions shown in
Figure 7.12 are input to the program. The MTBF figure generated by the Monte Carlo program
is 14.8 years and falls within the 99% confidence interval produced by the original simulation.

In the past, researchers have used point statistics rather than distributions for their statis-
tical models. For detailed functional simulation models of this nature and of the type described
in chapter 4, single point statistics may not be representative of the behavior of teh detailed
model it replaces. For experiment 1, if the mean inter-failure times are used (implying an expo-
nential distribution) the MTBF is 4.21 years. This is more than double the actual MTBF. This
demonstrates the need to consider an entire distribution because it demonstrates that various
distributions with identical means can produce significantly different results.

Once the measured failure distributions have been collected, the hybrid models can be
used to evaluate alternative configurations without reverting back to the original functional

.
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Method | Repair 99% Conf. Int. Time No.
Min. MTBF yrs. Runs
Sim. 5.0 0.99 | 1.04 | 1.09 | 6.75 hrs. 30
10.0 0.59 | 0.61} 0.62 | 6.75 hrs. 30
Monte 5.0 1.09 | 1.1 1.11 30 sec. 5000
Carlo 10.0 | 0.616 | 0.62 | 0.625 | 18 sec. | 5000
Markov 5.0 - 1.06 - 8 sec. -
Model 10.0 - 0.60 - 8 sec. -

Table 7.4: System MTBF for various memory re-integration times.

simulation. The impact of architectural changes that do not alter the failure distribution, such
as different re-integration times, can be evaluated rapidly. Table 7.4 contains results where the
global memory re-integration times of 5 minutes and 10 minutes are used. Results obtained
directly with the functional simulation are also shown to verify that the hybrid approaches

produce valid results.

7.4 Discussion

This chapter presented the acceleration approach provided by DEPEND. The approach. con-
sisting of an unique combination of hierarchical simulation, time acceleration and hybrid sim-
ulation, was illustrated in stages. The system evaluated was the Tandem Integrity S2 system.
Results of each stage were validated with either measurements from an Integrity S2 or from
a functional simulation that does not use the acceleration technique. The results demonstrate
that the acceleration technique can produce accurate results at a fraction of the cost. How the
approach is automated within DEPEND is described in Appendix A.

The acceleration approach replaces processes, which are difficult to model analytically and
expensive to simulate, with statistical models. For the Integrity S2 application, the statistical
models used were failure distributions. However, for different applications, other statistical
models may be used. The acceleration approach is particularly attractive if a system is analyzed
extensively. Then, the overhead of extracting and fitting distributions can be amortized over the
time needed to run various experiments and study alternative configurations. Using hierarchical
and hybrid simulation, it is possible to represent a complex, functional simulation (Figures 5.2

& 7.4) with a much simpler, abstract model (Figure 7.9). It is easier to apply variance reduction
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techniques to this model than the original simulation program. Finally, for extremely large,
complex systems, where the complexity of the submodels are significant, this approach can he
nsed recursively on the submodels as well. This chapter illustrated how the approach can be
used to include the impact of software under hardware faults when analyzing the entire system.
This same approach may be a viable way of including the impact of chip-level design when

evaluating system reliability measures.
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Chapter 8

Analysis of the TMR-based System

The major issues in simulation-based dependability analysis have been discussed and our solu-
tions for them have been presented in the previous chapters. This chapter uses the DEPEND
tool, the simulation models described in chapters 5 and 6 along with the acceleration tech-
niques presented in chapter 7 to analyze a Tandem Integrity S2-like machine. The purpose of
the study is to investigate issues which include: correlated errors, accurate modeling of cor-
related errors, latent errors, inter-component dependencies during automatic repair, memory
scrubbing heuristics, application specific analysis of scrubbing schemes, impact of repair times.
impact of different configurations, and isolation of dependability bottlenecks. The study is
conducted in phases to isolate and analyze the impact of factors such as correlation and error
latency. In addition, studies that evaluate the combined impact of several of the factors are also
conducted. The goal of the study is to determine what error conditions are especially detri-
mental and what architectural features are especially susceptible to the types of errors injected.

This comprehensive study illustrates many of the capabilities of DEPEND in a realistic setting.

8.1 Assumptions and Parameters Used in the Simulations

For the most part, the studies use a standard set of failure rates, latency distributions and
architectural configurations. This section describes the parameters and the assumptions made.
When other parameters are used, it will be explicitly stated.

The error arrival means are based on findings from a measurement-based analysis of real

error data collected from a DEC VAXcluster multicomputer system(68]. Tang found that the

-
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mean time between CPU errors (1/Acpy) in the system was 265.8 hours with a standard
deviation of 497.6 hours. The mean time between memory errors (1/Apfemory) Was 27.0 hours
with a standard deviation of 150.4 hours. The combined error arrival rate is approximately
1 every 24 hours. Of this combined rate, approximately 62% of the errors are injected into
the global memory and 38% are injected into the processor board containing the CPUs and
the local memories. These numbers are based on the size of the memories (8Mbytes of local
memory per board and 32Mbytes of global memory per board) and the contribution of the CPU
error arrival rate to the combined error arrival rate. Of course, one cannot assert that the error
rate of the Tandem Integrity S2 is similar to that of the VAXcluster. Since the studies are not
concerned with absolute reliability figures but rather with the trends and changes to system
reliability due to various conditions, this does not pose a problem. An exponential distributed
error arrival rate is assumed.

Several different error latency distributions are used in the studies. The latency distributions
obtained in chapter 6 are used when studying different memory scrubbing schemes and to
perform application specific analysis of the system. Otherwise, exponentially distributed error
latency distributions with various means are used to analyze trends in system reliability as
the latency gradually increases or decreases. Normally distributed latency distributions are
also used. In some studies, very large latencies are used and are based on findings from a
measurement study of the VAX 11/780 by Chillarege [9]. Chillarege found that error latency
is workload dependent. Errors injected at midnight, when the workload was low, had a mean
latency of 8 hours with a standard deviation of approximately 4 hours. Errors injected at noon,
when the machine was used heavily, had a mean latency of approximately 44 minutes and a
standard deviation of 29 minutes. These measured error latencies are approximated by normal
distributions with the means and standard deviations just mentioned.

All errors, including undetected latent errors, residing in a processor or in a global memory
are assumed to be corrected when the component undergoes a re-integration, the system is
" rebooted or when scrubbing takes place - regardless of the number of latent errors residing
in the system. Therefore, not all the errors injected are detected and the actual error arrival
distribution of detected errors depends on the scrubbing rate, the component re-integration
rate, the error latency and the injection rate. Because error latencies and global memory re-

integration times are workload dependent, various system workloads are implicitly modeled
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by varying these parameters. Finally, since we are primarily concerned with transient errors,
permanent errors are not injected and the MTBFs presented do not reflect their impact on
system reliability. The voters are assumed to be error free. For most studies, the repair
coverage, the probability that a failed component will be successfully re-integrated into the
system after an error is detected, is assumed to be 1 so long as a second error is not detected
before the re-integration is completed.

Except where explicitly stated, the simulations are executed with a POST time of 60 seconds,
a global memory re-integration time of 2 minutes and with memory scrubbing turned off.
The mean time between failures (MTBF) is calculated by dividing the simulation period by
the average number of system failures. The confidence level for the results shown is 95%
for an interval with a relative half-width of 5%. The MTBF figures presented in this paper
should not be construed to reflect the MTBF figures of an actual Tandem Integrity S2 system
because the error arrival rate which has a direct bearing on this measure, was not obtained

from measurements of the Tandem Integrity S2.

8.2 Impact of Latent Errors

In this section, several experiments are conducted to determine the impact of latent errors
on the MTBF of the system. Although there have been many studies to measure fault and
error latency [9, 45, 63, 66, 74] and most researchers conjecture that latency degrades system
reliability, there are very few studies that have actually tried to quantify and determine the
impact of latency on the system. In [66], the authors study the effect of latency (which they
define to be the sum of fault and error latency) on a TMR flight control system. They derive
the probability of system failure as the probability of a second failure that produces the same
erroneous output as an earlier, latent error. With both errors triggering at the same time,
the voter is fooled and the error escapes and affects the flight control system. A gate-level
simulation of one of the processors was injected with faults to determine parameters used in
the derivation. Their results show that unless the latency is very large, the effect of latency on
system reliability is very small.

In this study, we analyze the impact of the accumulation of latent errors in the system.

If there are a large number of latent errors in the processor boards, is the probability of a
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System MTBF in years
Mean (min.) | Exponential Normal
2 6.9 £0.33 | 6.4 £0.32
4 6.56 £0.32 | 6.83 £0.34
8 7.1 £0.35 | 7.0 £0.35
16 7.04 £0.34 | 6.77 £0.34
32 7.08 £0.34 | 6.87 £0.35
64 6.64 £0.33 | 7.05 +£0.36

Table 8.1: System MTBF for two latency distributions with various means.

near-coincident error increased? The study also considers the inter-dependencies due to latent
errors. In the Integrity S2, a latent error in a healthy CPU that is detected during re-integration
will cause the system to fail. Latent errors can also propagate creating more errors, however,
this effect is not considered in this study.

In the first experiment, the effect of an accumulation of latent errors is investigated. Errors
are injected into the system at a rate of one error a day. Exponential and normal latency
distributions with various means are tried to determine if there is a trend in system MTBF. For
the normal distributions, the standard deviation is always half the mean. Table 8.1 presents the
results of the simulation. The MTBF for the case in which the latency is zero is 6.76 (+0.32)
years. The table indicates that the MTBFs for all the latency distributions produce results
similar to the case when there is no error latency. This is due to two factors. First, because the
error latency is much smaller than the error arrival rate, there is not a substantial accumulation
of errors. Second, the detection of any error in a processor and the ensuing re-integration erases
all other latent errors in the processor thus further reducing the accumulation of latent errors.
The table also shows that the specific distribution of the latency times, whether normal or
exponential, does not affect system MTBF.

To increase the accumulation of latent errors, two system! error arrival rates are tried:
one error every 30 minutes and one error every 5 minutes. The effect on system MTBF,
for exponential latency distribution times, is shown in Table 8.2. Detailed analysis of the
simulation output files shows that the number of accumulated error in a processor or global

memory increases, however, it still fails to reduce system MTBF. On the contrary, the svstem

1This is the number of errors injected into the system and not into each component.

-
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Mean Latency System MTBF in years
in minutes A = 1/30min. A = 1/5min.
0 0.0031 £0.00016 | 0.0001 £0.00001
2 0.0034 £0.00018 | 0.0001 £0.00001
4 0.0033 £0.00017 | 0.0002 £0.00001
8 0.0037 £0.00018 | 0.0002 +0.00001
16 0.0041 £0.00021 | 0.0003 £0.00002
32 0.0052 £0.00026 | 0.0004 £0.00002
64 0.0068 +£0.00036 | 0.0007 £0.00004

Table 8.2: System MTBF for two fast error arrival rates.

MTBEF increases with larger latency times indicating that the accumulation of errors alone is
not detrimental to system reliability. The increase in the MTBF occurs because the latency
times are of the same order of magnitude as the error arrival rate and hence they increase the
mean time between error detections noticeably.

These results indicate that the accumulation of latent errors, in and of itself, does not
cause near coincident errors. However, the study was made under two assumptions. First,
re-integration coverage is 100% and second, re-integration coverage does not depend on the
state of the other components in the system. That is, there is no intercomponent dependence
(see chapter 4). In reality, in the Integrity 52, the remaining healthy processors in the system
control the re-integration of the faulty processor. During re-integration, the entire content of
the two healthy processors is copied to the faulty one. If during that time, there is a discrepancy
in the contents of the two healthy processors, the system fails. The same holds for the global
memory boards. To model this scenario, the simulation model fails during re-integration if any
healthy component contains a latent error. Table 8.3 contains the results for various different
exponentially distributed latency times. The error arrival rate is one error a day. The results
very clearly indicate the adverse impact of latent errors on system MTBF. Even with a mean
latency time of just 2 minutes, and a system error arrival rate of 1 per day (which means, an
error is injected into a processor once every 8 days, and into a global memory board once every
3.2 days) system MTBF is slashed by more than 50 percent. As the latency times increase, the
MTBF is further degraded.

To summarize, the accumulation of latent errors does not cause near coincident errors.

Rather, it is a combination of error latency times, system activity and repair policy that cause
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Mean Latency | System MTBF
in minutes in years
0 6.7 £0.32
2 3.14 £0.16
4 2.09 £0.11
8 1.3 £0.07
16 0.75 £0.04
32 0.40 £0.02
64 0.32 £0.01

Table 8.3: System MTBF with inter-component dependence.

near coincident errors that adversely impair system reliability. A system like the Integrity S2
is especially vulnerable to latent errors because its on-line re-integration scheme requires that
the entire contents of the healthy boards be copied to the newly re-integrated board. Thus
any latent error, in any segment of either healthy board, is guaranteed to cause system failure.
Other systems with different repair policies may not be as sensitive to latent errors. To properly
evaluate and quantify the impact of latent errors, it is imperative that system activity such as

repair policies be incorporated into the model.

8.3 Impact of Correlated Errors

TMR systems have been shown to be extremely effective against single, independent errors.
In this experiment, correlated errors are injected to determine their impact on system relia-
bility. Inter-component dependence is not modeled in the first two experiments. In the first
experiment, errors with zero latency are injected, and of these, 2% are correlated errors (see
Figure 7.4). The modeling is similar to the ‘partial coverage’ technique commonly used with
analytical models. The system MTBF was found to be 0.129 (+ 0.006) years. Comparing this
to an MTBF of 6.76 years (determined when latency is zero and there is no correlation) we
see that even a very small fraction of correlated errors causes an order magnitude reduction in
the MTBF. However, measurement studies [67, 73] show that correlated failures do not occur
simultaneonsly as modeled here.

Correlated errors with latency are used to mimic the phenomenon of “staggered machine

failures” found to be caused by correlated errors [73]. Table 8.4 shows the system MTBF for two
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System MTBF in years
Mean (min.) | Exponential, Cx =1 | Normal Cx = 0.5
2 0.216 £0.006 0.158 +£0.008
4 0.334 £0.011 0.245 £0.012
8 0.560 +£0.016 0.453 £0.023
16 0.960 +0.048 0.825 £0.041
32 1.67 +£0.083 1.46 +£0.073
64 2.71 £0.129 2.46 £0.123
120 3.97 £0.201 3.65 £0.182
240 5.36 +0.266 5.05 £0.252
480 6.59 £0.333 6.61 £0.33
2160 12.06 £0.6 13.2 £0.683

Table 8.4: System MTBF for two latency distributions with various means.

latency distributions, exponential and normal, with various means. The standard deviation of
the normal distributions were set to 1/2 of the mean. The most important result shown in the
table is that when error latency is considered, the degradation in the MTBF due to correlation
is not as significant and may not be orders of magnitude less. For instance, when the mean of
the latency distribution is 32 minutes, the MTBF is nearly 13 times larger than the case when
error latency is not considered. For really large latency times exceeding 16 minutes, there is no
longer an order degradation reduction in the MTBF, and for very large latency times, there is
an increase in the MTBF. The table also shows an inverse relationship between the degradation
in the MTBF and the mean of the latency distribution.

The results in Table 8.4 also show that the normal latency distribution produces smaller
MTBF figures. The difference in the MTBF between the two types of distributions is sta-
tistically significant for means upto 32 minutes, and in cases are 25% smaller. To determine
whether this phenomenon is a characteristic of the normal distribution or due to the fact that
the coefficient of variation (C; = o/u) is smaller than that of the exponential distribution, the
experiment was repeated with different C; values. Table 8.5 contains the results. Recall that
the coefficient of variation for the exponential distribution is always 1. The results in Table 8.5
show that increasing C, increases the system MTBF. It also shows that even when the C, of
the normal distribution is the same as that of the exponential distribution, its MTBF figures

are, for the most part, statistically different, and in this case larger. The reason is that the
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Table 8.5:

System MTBF in years

Mean (min.)

Cx =05

Cx =1.0

Cx =20

2
4
8
16

32
64

0.158 £0.008
0.245 £0.012
0.453 +0.023
0.825 £0.041
1.46 £0.073
2.46 £0.123

0.211 £0.01
0.368 £0.018
0.649 £0.032
1.26 +£0.063
2.09 +0.104
3.38 £0.169

0.328 £0.016

0.5832 £0.029
1.0691 £0.0538
1.8015 £0.09

2.8108 £0.139
4.0841 +0.203

System MTBF for the normal latency distributions with varying C, values.

System MTBF in years

Exponential, Cx = 1

Normal Cx = 1.0

0.126 +0.006
0.124 +£0.006
0.115 +0.006
0.11 £0.005
0.099 +£0.005
0.081 £0.004

0.128 £0.006
0.124 £0.006
0.114 £0.006
0.106 £0.005
0.094 £0.005
0.073 £0.004

Table 8.68: System MTBF for the exponential and normal latency distributions with inter-
component dependence.

exponential distribution has a larger density of latency times below the mean, thus there is an
increased probability that two correlated errors will be detected near coincidentally.

The resnlts of both tables seem to indicate that the larger the latency the better. In fact, in
Table 8.4 the system MTBF is nearly doubled (from the case with zero latency) for latency times
with a mean of 36 hours. However, recall these experiments do not consider inter-component
dependence. Table 8.6 shows the MTBF figures obtained when inter-component dependence is
considered. Now it becomes clear that for this architecture, the smaller the latency the better
the system MTBF.

To summarize, the experiments conducted reveal that simple analytical models that fail
to consider error latency exaggerate the impact of correlated errors. If latency is considered,
the impact of correlated errors is noticeably less, and it becomes negligible if the latency is
very large. In the previous section where correlated errors were not injected, there was no

statistically significant difference in the MTBF results produced with the normal and exponen-
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tial distributions (see Table 8.1). In this section, for means less than 64 minutes, the latency
distribution produce statistically different MTBF figures. Between the exponential and nor-
mal distributions, if they both have the same Cx value, the exponential distribution produces
smaller MTBF figures. Furthermore, the larger the Cx, the larger the MTBF. What this means
to the designer is that if the latency times are very small, correlated errors are more likely to
have an adverse impact. If the latency times are very large, correlation is not as important an
issue. Typically, however, latency distributions are mixed with a large number of errors with
small latency times and a few with very large latency times. The latency times obtained in
chapter 6 follows this behavior. With such distributions, their will not be a pronounced increase
in the MTBF as the mean of the latency distribution is increased. Furthermore, correlation

will noticeably degrade system MTBF.

8.4 Evaluation of Memory Scrubbing

Recall that the Tandem Integrity S2 relies on memory scrubbing to correct latent faults in
the CPU and Global memory boards. In this section, experiments are conducted to determine
the effectiveness of the existing scrubber. In chapter 6, the software environment was used
to determine the application specific coverage of the existing scrubber and that of a proposed
“dual” scrubber, for a single processor. In this section, the hierarchical approach, described in
chapter 7, is used to extend the application specific analysis to consider the whole system and
perform a more complete analysis of the two scrubbing schemes.

Memory scrubbing has been evaluated analytically in [55]. The authors assume that all
words in memory are accessed with equal probability and access times are exponentially dis-
tributed. They provide an exact upper and lower bound on the MTBF for exponentially
distributed scrubbing and an approximate upper bound for deterministic scrubbing. Deter-
ministic scrubbing is shown to provide MTBFs that are twice as large. The approach is very
useful when evaluating a single memory system under the assumption of uniform memory ac-
cess. In our simulation-based study, we consider several memory boards, their different repair
times, error latency, inter-component dependence inherent in the architecture and the effect of
a specific application running on the system, when evaluating the MTBF. Furthermore, with

the simulation-based approach we are also able to provide coverages of the scrubbers. Some of

102



these aspects can be included in a CTMC model. To understand how much can be accurately
captured, a general stochastic Petri-net tool was used to model just the three processors and
the memory scrubbing scheme. Issues such as application specific analysis and intercomponent
dependence were not addressed. The Petri-net model shown in Figure 8.1 resulted in a 2000

state CTMC for n = 6, the maximum number of accumulated latent errors in a board. Table

A error arrival rate per cpu

Y error latency -- dependent
on number of latent errors

1 repair rate
scrubbing rate

N maximem ousber of latemt
arrors in a cpu

V all V tokens are moved

¢ initial token placesent

Inhibitor arcs from sys_fail
to all timed transitions are
not shown.

Petri-net for only one cpu, CPU1l, is shown

Figure 8.1: Petri-net model of the three CPUS with memory scrubbing.

8.7 shows the MTBF figures obtained with the Petri-net model, a DEPEND simulation model,
and the relative difference of the Petri-net model. The large difference in the results of the
Petri-net model are due to its inability to model the deterministic progression of the scrub-
ber through the memory and because it assumes an exponential scrubbing rate which does
not bound the scrubbing interval to 60 minutes. The DEPEND simulation, however, models
the location at which each error is injected, the location of the scrubber at the time of each
injection and the exact time the scrubber takes to detect and correct each error. A 5-stage
Erlang distribution was used to replace the exponential scrubbing distribution, but this pro-
vided only a small improvement in the results at a cost of increasing the number of states to
10,000. Interestingly, because the percent difference varies with the latency, the designer can
never be sure how close the model results are to the real values. This example shows that a
CTMC can be used to provide a rough estimate of a deterministic process. It also justifies the
need for a simulation-based study which can provide more accurate results, permit the use of

.
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non-exponential distributions, represent dependency caused by latency, and allow application
specific analysis. What follows is a step by step analysis of the existing single and a new dual

scrubber.

Mean MTTF (yrs.) Percent
Latency (min.) | DEPEND | Petri-net | Difference
2 6.002 6.46 7.67
4 6.54 6.80 3.98
8 7.59 7.47 1.58
16 11.05 8.9 19.45
32 20.21 12.07 40.28
64 45.19 19.75 56.63
128 141.05 40.34 71.39

Table 8.7: Comparison of MTBF obtained with DEPEND and the Petri-net model.

The effectiveness of the scrubber is intimately tied to the error latency distribution. Figure
8.2 shows the MTBF of the system, with and without scrubbing, for exponentially distributed

latency times with various means. The scrubber sweeps through the entire memory every
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Figure 8.2: System MTBF for various latency distributions (Hourly Scrubbing).
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Mean Latency | Scrubber
in minutes Coverage
2 0.033
4 0.066
8 0.132
16 0.258
32 0.45
64 0.65

Table 8.8: Scrubber coverage for various exponential error latency distributions.

hour. As the mean of the latency distribution increases, the coverage of the scrubber increases
rapidly (Table 8.8). For small latency distributions with means of 2 to 4 minutes, the scrubber
improves the MTBF by only 7% from the base case with no scrubber. But for means of 32
and 64 minutes, the scrubber increases the MTBF by 232% and 827%, respectively. Hence the
scrubber is most effective against errors with large latency times. These errors mostly reside
in unused or seldomly used parts of memory. Errors within actively used parts of memory are
typically detected by the process of execution and causes the board containing the error to be
shutdown. The ineffectiveness of the scrubber against small error latencies was also found in
(76] in which the author used memory traces and simulation to estimate the scrubber’s coverage.

Next we simulate the intercomponent dependence caused by latent errors is to test the
effectiveness of the scrubber. Figure 8.3 shows the MTBF of the system, with and without
scrubbing. Without the scrubber, the system MTBF degrades monotonically as the mean of
the latency distribution increases. Even with a small mean of 2 minutes? there is more than
a 50% degradation in the MTBF (3.14 years) when intercomponent dependence is modeled.
With hourly scrubbing, the MTBF increases to 3.47 years, and with a scrubbing cycle time of 30
minutes, the MTBF reaches only 3.56 years. As the figure shows, except for the case with a mean
latency of 128 minutes and a 30 minute scrubbing cycle time, intercomponent dependence caused
by latency reduces the system MTBF significantly. It also illustrates that memory scrubbing, at
realistic cycle times that do not impose a noticeable performance overhead, are quite ineffective

against this phenomenon. The MTBF curves in the figure, for all three scrubbing periods, do

2The smaller the latency time, the smaller the probability of a system failure due to intercomponent depen-
dence caused by latency.
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Figure 8.3: System MTBF when inter-component dependence is modeled with hourly scrub-
bing.

not decrease monotonically. This is due to the trade-off between small and large latency times.
Though errors with small latencies are less likely to be corrected by the scrubber they are also
less likely to cause a near-coincident errors due to intercomponent dependence. Errors with
large latency are more likely to cause near-coincident errors, but are more likely to be detected
and corrected by the scrubber. The minimum MTBF occurs for a mean latency that is half
the scrubber’s cycle time. For example, the smallest MTBF for the scrubber with a 30 minute
cycle time occurs for the latency distribution with a mean of 16 minutes. This information is
very useful to the designers because if they have some general idea of the latency distribution
of the system, they can avoid using a scrubbing period at its minimum effectiveness point.

In chapter 6, an abstract representation of the Gauss program was executed to obtain
detection latency times and to evaluate two scrubbing schemes. The analysis focussed on the
coverage of the existing and the newly proposed ‘dual’ scrubbing scheme with respect to active

errors that are detected by the process of program execution. In the experiments that follow,
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the analysis of the scrubbers is also extended to consider the rest of the memory and the overall
impact they have on system MTBF. Without such a complete analysis it is difficult to determine
which scheme is more effective in improving system reliability. As it is not possible to directly
perform the detailed evaluation in chapter 6 while also considering the rest of the system.
the hierarchical approach described in chapter 7 is used for this extended analysis. Executing
several instances of the Gauss PCFGs on the three processors while also modeling all the
scrubbers, the global memory system and the re-integration process will require astronomically
large simulation times. Instead, the execution of the PCFGs is replaced with their collected
detection latency times. For the experiments, the CPU memory is logically divided into two
segments: the application space and the system space. The size of the application space is a
multiple of the of the size of the memory image of the actual Gaussian elimination program times
the number of Gauss programs assumed to be executing. The detection latency of the errors
injected into the application space is sampled from the collected empirical latency distribution
file. For instance, to model the execution of four Gauss programs, the latency distribution
collected when four Gauss PCFGs were executed is used in this simulation. The CPU memory’s
system space and the global memory are injected with errors having exponentially distributed
latency times with a mean of 16 minutes. Both the single scrubber and the dual scrubber are
tested under this configuration. The ratio of the overheads of the dual scrubber (see Equation
6.4) versus the single scrubber used are 1, 2, 4, 8, and 16. Recall that the dual scrubber has two
scrubbers. One scrubs system space and the other scrubs the application space. By making the
system space scrubber operate at a rate four times slower than the single scrubber, it is possible
to scrub the application space frequently and still maintain an overhead ratio of 1. The other
overhead ratios are obtained by further speeding up the rate of the application scrubber. The
question is what happens to system MTBF with this scrubbing configuration?

Figure 8.4 plots the application specific MTBFs obtained with the single scrubber and the
dual scrubber for 1, 4 and 16 simultaneous executions of the Gauss program. The percent of
the CPU memory allocated to the application space and the mean of the empirical distribution
which represent the execution of the programs are listed in Table 8.9. The results show that
the single scrubber provides similar or better MTBF figures than the dual scrubber. Table
8.10, which shows the coverage of the single scrubber and the dual scrubber with an overhead
ratio of 1, indicates why this is the case. Even though the application scrubber’s coverage is

.
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Figure 8.4: System MTBF obtained with the single and dual scrubbing schemes.

Number of Percent of Mean Latency
Programs | CPU Memory in Seconds

1 0.5 8.8
4 1.64 31.34
16 6.6 116.95

Table 8.9: Parameters of the experiment.
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Dual Scrubber (Ovhd. = 1) Single Scrubber
No. Appl. Space | Sys. Space | Overall Overall
Programs Coverage Coverage | Coverage Coverage
1 0.33 0.066 0.068 0.26
4 0.32 0.067 0.07 0.26
16 0.31 0.066 0.08 0.24

Table 8.10: Coverage of the two scrubbing schemes.

System MTBF in years

Scrubber Application Space (Percent of CPU memory)
5% | 10% | 20% | 30% | 40% | 50%
Single 12.19 | 12.01 | 12.56 | 11.95 | 12.18 | 12.76

Dual (Ovhd. = 1) | 11.54 | 12.34 | 11.96 | 11.75 12.31 | 11.85
Dual (Ovhd. = 2) | 11.8 | 12.37 | 12.23 | 12.33 11.85 | 11.76
Dual (Ovhd. =4) | 11.63 [ 11.95 | 11.86 | 11.71 | 11.57 12.13

Table 8.11: System MTBF obtained for various application memory space sizes.

very high, the overall coverage of the dual scrubbing scheme is low because most of the errors
are injected into system space, where the scrubbing occurs with a cycle time of 4 hours. As a
result, the single scrubber’s coverage is on average four times higher.

Next, we arbitrarily increase the size of the application space to see how the scrubbers
perform. Application space sizes that are 5, 10, 20, 30, 40 and 50 percent of the total CPU
memory are tried. The empirical latency distribution obtained for 4 Gauss programs is used for
all errors injected into the application space. Table 8.11 contains the MTBF figures obtained for
the two scrubbing schemes. In spite of increasing the application space, there is no statistically
significant improvement in the MTBF figures obtained with the dual scrubbers. This is because
as the size of the application space increases, the scrubbing frequency of the application space
scrubber must be reduced to maintain reasonable overheads. Hence, as the application space
increases, the coverage of its scrubber decreases thus offsetting any gains.

Since the introduction of the Integrity S2, the memory configuration has changed to improve
the performance of the machine. The newer Integrity 52 machines come with larger CPU
memory and smaller global memory. The experiments in which we vary the application memory

space size is repeated with a configuration where the CPU memory size is 64Mbytes and the
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System MTBF in years

Scrubber Application Space (Percent of CPU memory)
5% | 10% [ 20% | 30% | 40% | 50%
Single 13.79 | 12.15| 12.17 | 11.52 | 10.60 | 10.18

Dual (Ovhd. = 1) | 88 | 8.97 | 8.73 | 8.66 | 8.19 8.3
Dual (Ovhd. =2) | 88 | 887 | 877 | 8.95 | 8.08 8.62
Dual (Ovhd. =4) | 9.03 | 9.15 | 9.16 | 9.23 | 8.95 8.73

Table 8.12: System MTBF obtained for various application memory space sizes with the new
memory configuration.

global memory size is 16Mbytes. The error arrival rate is kept fixed (for comparative reasons)
but the percent of errors injected into the CPU memory has increased to 85% due to its larger
size. Table 8.12 lists the MTBF figures obtained with the new memory configuration. With a
larger percent of errors injected into the CPU, the difference between the two scrubbers is even
more apparent. Here, the dual scrubber produces MTBF values that are up to 25% lower.

To summarize, the evaluation of memory scrubbing shows that it is only effective if the
error latency is large. For mean latency times exceeding 30 minutes, hourly scrubbing can
improve the MTBF by over 200%. Increasing the frequency of the scrubber can improve its
coverage of errors with smaller latency times but at a cost of high performance overhead. Fur-
thermore, as shown in chapter 6, increasing the scrubbing frequency beyond a certain point
provides diminishing increase in the coverage. The scrubbing scheme was found to be very inef-
fective against near-coincident errors caused by error latency. However, if the latency times are
very large, the scrubber provides reasonable improvement in the MTBF. When the possibility
of near-coincident errors caused by latency is modeled, the MTBF curves no longer increase
monotonically with an increase in the mean of the latency times (compare Figures 8.2 and 8.3).
The experiments show that the minimum MTBF point for the scrubber occurs as the mean
latency time approaches half the scrubber’s cycle time.

The entire memory will not display the same detection distribution because it varies with
time and with the frequency and nature of use. To model applications exercising the memory,
detection latency times obtained from detailed simulations in chapter 6 are used. Portions of
the CPU memory, the application space, allocated to the applications are injected with latency

times sampled from these empirical distributions. This configuration was then used to evaluate
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the existing single and the proposed dual scrubbers from a system perspective. The nature of
the Integrity $2’s re-integration mechanism makes the dual scrubber ineffective relative to the
single scrubber. This is in spite of the fact that it provides orders of magnitude improvement
in coverage for the application space. The problem is twofold. First, the application space is
small compared to the rest of the memory. Second, to limit the overhead of the dual scrub-
ber, the rest of the memory is scrubbed at a much slower rate than the existing scrubber. By
slowing down the scrubbing of the rest of the memory, the system becomes more vulnerable
to near-coincident errors. This extended analysis of the scrubbing schemes, possible with the
hierarchical technique, made it possible to perform a complete analysis of the scrubbers and
quantify their coverage and the system MTBF figures they would produce. With this informa-
tion, it was realized that the dual scrubber, which seemed so promising with respect to just the

application, reduces the dependability of this system as a whole.

8.5 Impact of Repair Times

The Integrity S2 is designed to tolerate single faults. For such systems, the time needed to
repair a faulty component is referred to as its window of vulnerability. If a second fault arrives
within this window, the system fails. The CPU re-integration time consists of 60 seconds
to perform a power-on self-test (POST) and 1.5 seconds to re-integrate the CPU. The re-
integration time cannot be easily reduced but the POST time can be cut by using different self-
checking programs. Since most errors are caused by transient faults, reliability can be improved
by performing a perfunctory check that takes a few seconds and immediately initiating a re-
integration. If another error is detected in the same board shortly thereafter, a more thorough
POST program can be executed to check for permanent defects. The re-integration time for
the global memory varies with workload, but it can be reduced by increasing the priority of
the re-integration process. In this section, simulations are conducted with various POST times
and global memory re-integration times to quantify their impact on system MTBF. Specifically,
POST times of 10, 20, 30, 40, 50 and 60 seconds and the global memory re-integrations times
of 1,2, 5 and 10 minutes are used in the simulations. Memory scrubbing is not activated and

a exponential error latency distribution with a mean of 16 minutes is used.
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Figure 8.5: System MTBF for various subsystem re-integration times.

The simulations are first executed with the original memory configuration (8MBytes of CPU
memory and 32Mbytes of global memory). With this configuration, where most of the errors are
injected into the larger global memory, the global memory time is the dominant factor. Figure
8.5a shows that the system MTBF decreases monotonically as the global memory re-integration
time is increased. Since the global memory is re-integrated on the fly, its re-integration time
varies depending on the workload on the system (see Table 5.1). Figure 8.5a can also be
interpreted to reflect the system MTBF for varying workloads. As the workload increases, the
reliability of the system decreases. Figure 8.5b illustrates what little impact changing the CPU
time has on system MTBF. This is especially the case as the global memory re-integration time
is increased. Clearly, for this memory configuration, the global memory re-integration time is
the bottleneck.’

The experiments are repeated in which the inter-component dependence due to latency is
modeled. The system MTBF for mean latency times of 16 and 8 minutes are listed in Table
8.13. Note that when the dependence is modeled, varying the global memory re-integration
time does not have as significant an effect on system MTBF. This is because, for the Integrity
S2, each latent error injected into the system creates a window of vulnerability. For instance,
if a latent error X is injected into CPUA, an error detected in the two other CPUs before X

is corrected will cause a system failure. So each latent error creates a window of vulnerability.
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MTBF in years
Global Memory Mean Latency
Re-int Times (min.) | 8 minutes | 16 minutes
1 1.47 0.76
2 1.3 0.74
5 1.0 0.63
10 0.79 0.54

Table 8.13: System MTBF with modeling of near-coincident errors.

If the error latency is large, they more so than the POST and global memory re-integration
times, become the dominant factor that determine system reliability.

The first experiment was repeated with the new memory configuration in which each CPU
contains 64Mbytes and each global memory has 16Mbytes. For ease of comparison. the error
arrival rate was not varied, however, the ratio of errors injected into the CPU and global
memory were changed to reflect their change in relative sizes. With this configuration, 85%
of the errors are injected into the CPUs. Figure 8.6 shows that now the CPU POST time is
the more dominant factor. Varying the global memory re-integration time does not have as
dramatic an affect as seen in Figure 8.5a. Comparing Figures 8.5b and 8.6b, one sees that
the system is more reliable with the new configuration. Given two systems with the same
amount of total memory (CPU and global memory), the system which has apportioned more
memory to the CPUs will have a higher reliability. This is because CPU re-integration takes
less time and is not done in the background. Of course, global memory re-integration can be
performed at a high priority like the CPU, but since the system also performs better when the
local CPU memory is large it makes more sense to re-apportion the memory. Part of the reason
for the higher performance is that access time to the local memory is smaller and there is no
synchronization overhead to be paid.

To summarize, reducing the global memory re-integration time and the CPU POST time
can improve system MTBF. Which re-integration time to reduce depends on the system config-
uration, with the component with the highest error arrival rate being the reliability bottleneck.
Since CPU re-integration times are smaller than global memory re-integration times, apportion-
ing more memory to the CPUs improves system reliability. It also improves its performance.

Experiments in which inter-component dependence caused by latency is modeled show that
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Figure 8.6: System MTBF for various subsystem re-integration times ~ New Memory Config-
uration.

error latency creates a window of vulnerability for this architecture, and this has the most
dominant affect on system reliability. When modeling inter-component dependence, reducing

CPU and global memory re-integration times does not noticeably improve system MTBF.
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Chapter 9

Conclusion

The contribution of this thesis is the development of a methodology for functional simulation-
based system level dependability analysis of fault-tolerant computer systems. Simulation-based
approaches have mostly been used at lower levels, for example at the gate level where the func-
tionality of the basic components are simple and their interconnections and inter-dependencies
are well defined. At the system level, simulation-based approaches have been either Petri-net
based extensions of analytical tools or have been designed to analyze only a small set of ar-
chitectures. Our proposed methodology is unique in that it addresses many of the difficulties
and issues that have limited the applicability and utility of these existing simulation-based ap-
proaches. The proposed methodology is designed to be generally applicable to a wide variety of
architectures and can model various fault conditions. It permits detailed functional modeling
of architectural features such as sparing policies, repair schemes, routing algorithms as well as
other fault-tolerant mechanisms. The approach permits actual execution of application soft-
ware for more realistic modeling. In addition, it allows the abstract representation of software
algorithms when actual code does not exist. Through this abstraction it is possible to study the
behavior and effect of the software on hardware faults and perform application specific analysis
of system level fault-tolerant mechanisms in the early design phase. Finally, unlike any other
existing simulation-based approach, an acceleration technique is proposed and implemented
that makes it possible to study fault-tolerant systems for extended periods of time.

The effectiveness of any methodology is best determined when actually implemented and

tested. The methodology has been incorporated into a software tool called DEPEND. Since
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its development, the tool has been used (and is being used) to analyze the Tandem Integrity
S2 system. the CM-5 Connection Machine, a distributed system executing a load balancing
algorithm, the computing element of the Hubble Telescope, a proto-type switching system
developed by Raymet, the Parsytec distributed computer being developed in conjunction with
the European Esprit Project and the Data Management System of the Space Station. In
addition, the tool has been ported to Tandem Inc., Thinking Machines, Raytheon Company,
IBM Federal Systems, NASA Langley, and NASA Ames for the purposes of evaluation and use
in studying prototype designs. -

The section below summarizes the main facets of the methodology and the experiments
used to illustrate and validate the features of DEPEND. The thesis ends with a section that

suggests possible extensions of this work.

9.1 Summary

Issues that impede the development of a general-purpose, functional simulation-based system

level dependability analysis tool include:
e Modeling a large variety of components.

Coping with the large fault model domain.

Reducing model development time and model complexity.

Incorporating software behavior under faults.

Reducing simulation time explosion.

9.1.1 The Approach

Modern software engineering techniques, and in particular the object-oriented design paradigm
are used to tackle the first three issues. Two somewhat competing criteria of modular decompo-
sition and composition along with inheritance and reusability are used to develop a structured
class hierarchy. This hierarchy provides a skeletal framework that can be readily customized
to create detailed simulation models of a wide variety of fault-tolerant architectures for fault

injection and dependability studies. The key idea was to encapsulate general mechanisms in
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a set of fundamental objects and through inheritance and clientship allow them to drive other
objects that simulate the architecture specific behavior. Thus a set of fundamental objects was
developed that facilitates and automates the development of simulation models. In addition. a
default set of objects that model many common architectures was created to further simplify
the development of simulation models. These fundamental and architecture specific objects can
in turn be inherited and developed to create still more elaborate ob jects.

Four basic fault models are provided which can be used to simulate specific fault behaviors:
status faults, process faults, server faults and data faults. A fault injector is used to inject
faults based on commonly used distributions: exponential, Weibull and constant. In addition,
user specified empirical distributions are also supported. The injector uses a fast table-based
injector to keep track of all components, their status and the time of their next injection. It also
automatically takes component aging into account and averts the problem of modeling local
and global times found in most analytical tools. A workload-based injection scheme has also
been developed. It varies the rate of injection based on the load on the system and permits
modeling of the workload/failure relationship found by other researchers.

Two examples are used to highlight the benefits of the functional simulation tool. Unlike
analytical and Petri-net tools, a system'’s fault behavior does not have to be pre-defined with a
set of probabilities. Rather, using detailed modeling of the architecture and its system software.
the failure modes of the system can be determined using the tool. [n one example, actual system
software is executed and a particular design feature that made it very susceptible to a particular

fault type was identified.

9.1.2 Software Modeling

DEPEND addresses the need to study the effect of software under hardware faults and to
perform application specific analysis. This is especially important to designers because the
effectiveness of many system level detection and fault tolerance mechanisms depend on the
class of applications running on the system. DEPEND allows the execution of actual software
on a simulated hardware platform, and it provides a software model that can be used to evaluate
the behavior and the effect of software on hardware faults. The model represents application
programs by decomposing them into graph models consisting of a set of nodes, a set of edges that

probabilistically determine the flow from node to node, and a mapping of the nodes to memory.
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The software model simulates the execution of the programs while errors are injected into their
memory space. The result provides application dependent parameters such as detection and
propagation times. The model is especially useful in the early design stages because it allows
designers to make application dependent evaluation of function and system level error detection
and recovery schemes.

One use of the software model was illustrated with a case study. The model was used to
obtain error detection latency times of the Gauss and sort programs running on a Tandem
Integrity S2 system and to evaluate the coverage of two memory scrubbing schemes. The
applicability of the model for different programs was evaluated by studying its sensitivity to
the detection parameter p;. Several detection equations, which model the low level detection
process of a CPU, were derived empirically from studying the behavior of the actual machine
under faults. Of these, the EXP detection equation was shown to be applicable to both Gauss
and Sort which use widely different sets of instructions. We feel that this detection equation
is generally applicable to most compute bound programs running on RISC processors. Error
detection latency times obtained with the model were validated with measurements from an
actual Integrity S2 system. Formulae which were derived to estimate application dependent
active coverage values of the scrubbing schemes were verified with the software model. The
application dependent coverage values obtained with the model were compared with those
obtained via traditional schemes that assume uniform or ramp memory access patterns. For
the Gauss program, some coverage values obtained using the traditional approach were found to
be more than 100% larger than those obtained with the software model. This result emphasizes
the importance of accurate application specific evaluation - especially when evaluating the

dependability of application specific systems.

9.1.3 Acceleration Technique

Unlike any other simulation-based dependability analysis tool, DEPEND provides an accelera-
tion technique to reduce simulation time explosion. The acceleration technique proposed uses
a unique combination of three schemes to provide speed-up. It uses hierarchical simulation, a
time acceleration algorithm, and hybrid simulation. First, detailed functional simulations of
segments of the system are executed to obtain statistical models that represent and characterize

their behavior. These statistical models are then used by higher level simulations that simulate

.
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and analyze larger segments of the system. Speed-up is achieved with this hierarchical approach
through a time acceleration algorithm. The time acceleration algorithm, used by the higher
level simulations, samples from the statistical models to determine the time of the next event
(represented by the statistical model) apriori. With this apriori knowledge, the simulation leaps
forward to a point in time just before the event and resumes detailed simulation. Once the
effect of the event has subsided, it leaps forward to the next chronological event. To achieve
further speed-up, a hybrid simulation approach is used. Using the notion of variable aggrega-
tion and decomposition, the entire dependability simulation is divided into two submodels: the
failure occurrence submodel and the repair submodel. Either or both submodels are simulated
in detail while statistical models to represent them are collected. Then, the statistical models
are used to drive either a Monte Carlo simulation or a Markov or Semi-Markov model to ob-
tain solutions for the entire system. The statistical models are typically distributions such as
detection latency distributions or propagation time distributions. But they may also be sets
of probabilities such as a fault dictionary used to represent the failure modes of an application
software.

The proposed acceleration technique differs from those used by others in that

It does not rely solely on analytical techniques to reduce simulation time explosion.

It is designed to work with detailed functional simulations.

It is widely applicable and does not impose any particular solution method. As such, it

caters to the general design philosophy of DEPEND.

It can be used in conjunction with other acceleration techniques such as importance

sampling.

The acceleration technique was illustrated with a case study of the Tandem Integrity S2. Us-
ing hierarchical simulation and time acceleration techniques, error latency distributions were
obtained. These distributions were validated with measured distributions collected from the
actual machine. The empirical distributions were then used in a hybrid model of the entire
system to obtain system MTBF figures. The results obtained were compared with those from
a simulation model that did not use the hybrid acceleration technique. The results from the

hybrid model were found to fall within the 99% confidence interval of the non-accelerated sim-

-
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ulation. Where the original simulation took 6 to 36 hours to generate results, the hybrid model

required only 50 seconds to 7 minutes.

9.1.4 Analysis of the TMR-based System

The DEPEND tool, including the software environment and the acceleration technique, is used
to analyze a TMR system that is based on the design of the Tandem Integrity S2. The purpose
of the study was to investigate issues which include: correlated errors, accurate modeling of
correlated errors, latent errors, inter-component dependencies during automatic repair, mem-
ory scrubbing heuristics, application specific analysis of scrubbing schemes, impact of repair
times, impact of different configurations, and isolation of dependability bottlenecks. This study
illustrates many of the capabilities of DEPEND in a realistic setting. A few of the findings are

now summarized:

e Under the assumptions of the study, the accumulation of latent errors does not, in and
of itself, increase the probability of near-coincident errors. But once the inter-component
dependence imposed by the Integrity S2’s architecture and its re-integration scheme is
modeled, error latency can reduce system MTBF by orders of magnitude, with the system

MTBF decreasing monotonically with increasing latency times.

e Simple analytical models that fail to consider error latency exaggerate the impact of
correlated errors. Correlated errors, modeled in a similar fashion to the ‘partial coverage’
technique commonly used with analytical tools were shown to reduce system MTBF by
orders of magnitude. However, once correlated latent errors were injected to mimic the
phenomenon of “staggered machine failures” found to be caused by correlated errors [73],
the impact of correlation was noticeably less and became negligible when the error latency
was very large. Hence, the impact of correlated errors depends on the error latency times

associated with the errors.

¢ The distribution of the latency times for correlated errors has a bearing on system reliabil-
ity. Errors with exponentially and normally distributed latency times with various means
were tried and found to produce statistically significant differences in system MTBF.

A normal distribution with the same mean as an exponential distribution, but with a
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coefficient of variation Cy = 2, was found to produce MTBF figures that were nearly don-
ble in size. Hence, the specific latency distributions used is important and can produce

significantly different results.

Memory scrubbing was found to be effective only if the error latency is large. For mean
latency times of 2 to 4 minutes, hourly scrubbing increases system MTBF by only 7%.
For mean latency times exceeding 30 minutes, hourly scrubbing can improve the MTBF
by over 200%. The MTBF curve increases monotonically as the mean of the latency

distribution increases.

The scrubbing scheme was also found to be very ineffective against near-coincident errors
caused by error latency. However, if the latency times are very large, the scrubber provides
reasonable improvement in the MTBF. When the possibility of near-coincident errors
caused by latency is simulated, the MTBF curves no longer increase monotonically with
an increase in the mean of the latency times. There is a dip in the MTBF curve with the
minimum MTBF point occurring at the point where the mean latency time is equal to

half the scrubber’s cycle time.

The acceleration technique was used to perform application specific analysis of the single
scrubber and the proposed dual scrubber while executing one or more instances of the
Gauss program. The dual scrubber was found to reduce system reliability compared
to the single scrubber in spite of the fact that its coverage of errors injected within the
application space is orders of magnitude higher. This is a function of the Integrity S2
architecture and its re-integration scheme. On another machine the dual scrubber may

improve the reliability.

Reducing global memory re-integration time and CPU POST time can improve system
MTBF. However, simulations show that reducing repair time of only the component with
the highest error arrival rate is necessary. Reducing the other component’s repair time
has negligible impact on system MTBF. Which re-integration time to reduce depends
on the system configuration. With the original configuration which had large global
memories, the global memory re-integration time was the dominant factor. With the new

configuration containing large local memory, the CPU POST time is the dominant factor.
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¢ Experiments modeling inter-component dependence caused by latency st®w: that error
latency creates a window of vulnerability for this architecture, and has the most dominant
affect on system reliability. When inter-component dependence is considered, reducing
CPU and global memory re-integration times did not noticeably improve system MTBF

for the error arrival rate used.

9.2 Future Extensions

The methodology and design philosophy incorporated into the existing DEPEND simulation
tool provides the foundation upon which significant future extensions can be built. Future
extensions that will enhance the state-of-the-art in functional simulation-based system level de-
pendability analysis can be divided into three categories: compiler-based enhancements, com-
plete fault injection and debugging environment and graphical interface.

The current implementation of DEPEND is essentially a super set of C++. It was specifi-
cally designed this way because a special compiler did not have to be developed thus allowing
rapid implementation and testing of the proposed methodology. However, by designing a specific
compiler it is possible to embed intelligence as well as features that will allow the implemention
of two major capabilities. Recall that DEPEND is a process based simulation tool. Process
based simulation facilitates developing large detailed simulation models but has the drawback
of a very large context switch overhead. This is especially true for the Sparc architecture which
has a large register file that must be copied out and in for each context switch. Using a special
compiler, it is possible to translate a process based simulation model into an event-driven sim-
ulation model. This approach will then provide the ease of programming without the context
switch overhead. Preliminary analysis with simple models has shown that this approach is very
promising and can attain 60 times speedups [3]. As mentioned in chapter 2, the crux of parallel

and distributed simulation lies partly in the way in which processes (or co-routines) are assigned

to the various processors. Yet, this issue is seldom addressed in the distributed simulation liter- .

ature. Using a special compiler that is cognizant of the functionality of DEPEND objects, the
DEPEND communication paradigms, and also aided by compiler directives, it will be possible to
make intelligent placement decisions to substantially reduce the communication messages used

by the processors to maintain a synchronized global clock. The compiler’s placement decisions
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will most likely be specific to a synchronization scheme. An existing synchronization scheme.
aided by the intelligent placement algorithm may make the approach less application sensitive
and thus capable of providing good speedup across a large domain of simulation models.
Inits present state, a DEPEND simulation model can execute actual C++ and C application
programs as a part of the simulation and corrupt any data values using the data fault type
described in chapter 3. The tool can be made more useful if the entire software image of
the application program, its static data space, text space, stack space and its heap space is
corruptible. Since random corruption of a program’s software image (which is ultimately just
a co-routine of DEPEND) can cause the co-routine and hence DEPEND simulation to abort,
an approach to capture and handle exceptions is needed. This must be coordinated by another
process that operates independently and outside of the DEPEND simulation. C++ provides
some exception handling facilities but they are still in their infant stages. Hence, standard
operating system signal handling routines will need to be used. While existing tools such as
FERRARI [36] and FIAT (18] already provide such an injection capability, implementing it
within a simulation environment provides a significant advantage. The application program
is executed on a simulated hardware platform rather than an actual one making it possible
to test the software on various types of architectures (e.g. single processor, shared memory
multiprocessor, distributed system) with minimal effort. For example, an actual operating
system can be executed and tested on a single processor initially and then executed on a
distributed system, by simply changing the underlying simulated hardware platform. With
little additional work the injection environment can be extended to permit debugging. Note
that since both the DEPEND simulation model as well as the application programs executed
within the simulation environment are just DEPEND processes, both can be debugged and
tested under normal operating conditions (that is without fault injection).

A graphical user interface can significantly facilitate the entry of simulation models. Cur-
rently, C++ programming is used to develop simulation models. As the system becomes large
and complex, faster and more efficient input schemes are necessary so that the models can be
developed with minimal effort and within a reasonable period of time. A major issue is how to
provide a user friendly data entry environment without losing the power of C++ programming.
A key to this problem will be to develop a methodology for explicitly specifving the physical
architecture of a system, the component inter-connections and their inter-dependencies. By

.
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inter-dependencies, we mean information such as what components fail when a .given com-
ponent is shutdown and what components must be healthy in order to initiate a repair of a
faulty component. Currently, system interconnections and the physical architecture are spec-
ified implicitly via the functionality of the simulation model. Inter-dependencies are specified
with “notification functions”, which though powerful are tedious and difficult to use for large
complex systems.

All three areas are fundamental research topics that can substantially enhance the state-
of-the-art in functional simulation-based system level dependability analysis and help to make

such a tool useful to industry.
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Appendix A

Automation of the Acceleration

Technique

The object-oriented paradigm facilitates the automation of the acceleration technique described
in chapter 7. Some objects used to automate the process are presented and described. Only
objects that are used to collect statistical models consisting of distributions are shown. Figure
A.1 shows the fundamental class store_dist used to collect a distribution. The method record() is
used to store (collect) samples obtained from a simulation model. The remaining methods return
commonly required statistics of the distribution. Method get_sample(), randomly samples from
the distribution and returns a value. This process involves creating a cumulative distribution.
using an inverse mapping [40] and a binary search.

The store_dist class is the fundamental class used to develop statistical model classes consist-
ing of one or more distributions. Figure A.2 shows how it is used to define a class, stat_model2,
that contains two distributions. The failure and repair submodels are developed from the sta-
tistical model classes. The user inherits a class that defines a statistical model they need and
then adds a method that contains the functional simulation that models the failure or repair
process. Figure A.3 shows the skeletal framework of a derived class that inherits stat_.model2
and defines the failure process. The failure submodel depicted simulates the failure occurrence
process and records the failure times of the CPU and global memory. When enough samples
have been collected, the finish() routine is invoked to wake up any process awaiting its com-

pletion. The repair submodel is not shown. It is developed in an identical fashion. That is. it
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class store_dist {

store_dist();

store_dist(int num); // number of samples stored

void init(int num); // number of samples stored

void record(double x); // store sample point x

double mean(); // return mean

double median(); // return median

double max(); // return maximum

double min(); // return minimum

double std(); // return standard deviation

double get_sample(); // randomly sample from distribution

Figure A.1l: Definition of class used to collect distributions.

class stat_model2 {
private:

store_dist x,y;

public:

stat_model2(int numx, int numy);
void record(int type, double value);
double mean(int type);

double median(int type);

double max(int type);

double min(int type);

double std(int type);

double get_sample(int type);

void finish();

void sleep();

// Each stores a distribution

// initialize each collector

// place value in to x or y based on type

// return mean

// return median

// return maximum

// return minimum

// return standard deviation

// randomly sample from distribution

// collection is finished - wakes up sleeping processes
// sleep until collection is done

Figure A.2: Definition of statistical model consisting of two distributions.
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class failure.model : public stat_modei2 {
void run_failure_model();

}

void failure_model::run failure_model()

{

while(!done) {
record(cpu, fail_time);

record(global_memory, fail_time);

}
finished();

Figure A.3: Definition of statistical model consisting of two distributions.

inherits a statistical model class and defines the repair submodel.

The Monte Carlo program which uses the statistical models obtained from the failure and
repair submodels is shown in Figure A.4. The program starts each submodel and then sleeps
until both have completed. It then executes the Monte Carlo simulation program that models
the Markov model in Figure 7.9. Only the logic used to determine the transition from the first
state, 0C0G, is shown.

The DEPEND objects provide all the mechanism needed to collect and sample from the
statistical models and use them in Monte Carlo simulations. The user supplies the definition
of the failure and repair submodel and the Monte Carlo program. Though the example shows

an example of hybrid simulation, the same objects are used with hierarchical simulation.
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main()

{
failure_model X;
repair-model Y;

Run each submodel and collect statistical model
X.run_failure_model();
Y.run_repair_model();
X.sleep();
" Y.sleep();

Monte Carlo model of whole system
state = 0C0G;
while(!done) {
switch(state) {
case 0COG: cpufailtime = X.get_sample(cpu);
gmemfailtime = Y.get_sample(gmem);
if(cpufailtime ; gmemfailtime) {
state = 1C0G;
time += cpufailtime;
} else {
state = 0C1G;
time += gmemfailtime;

}

Figure A.4: The Monte Carlo program that uses the failure and repair submodel.
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